www.freemaths.fr

TLE Technologique Mathématiques

Bernoulli & binomiale

CORRIGÉ DE L'EXERCICE

À DROITE OU À GAUCHE ?

CORRECTION

1. Déterminons la probabilité que le lance-balle envoie 10 balles à droite:

Soit l'expérience aléatoire consistant à envoyer une série de 20 balles.

Soient les événements A = " la balle est envoyée à droite ", et $\overline{A} = "$ la balle est envoyée à gauche ".

On désigne par X le nombre de fois où l'événement A s'est réalisé au cours des 20 épreuves.

Cette expérience est un schéma de Bernoulli.

Nous sommes en présence de 20 épreuves aléatoires identiques et indépendantes, avec à chaque fois 2 issues possibles: \mathbf{A} et $\overline{\mathbf{A}}$.

La variable aléatoire discrète X représentant le nombre de réalisations de A suit donc une loi binomiale de paramètres: n = 20 et p = 0, 5.

Et nous pouvons noter: $X \rightsquigarrow B(20, 0, 5)$.

Ici, nous devons calculer: P(X = 10), avec $X \rightsquigarrow B(20; 0, 5)$.

Soit X la variable aléatoire qui compte le nombre de succès.

Pour tout entier k, $0 \le k \le n$, la probabilité d'obtenir k succès sur n épreuves indépendantes (ou avec remise) est:

P(X=k)=
$$\binom{n}{k}p^{k}$$
. $(I-p)^{(n-k)}$, avec: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

D'où ici:
$$P(X = 10) = {20 \choose 10} (0,5)^{10} (0,5)^{10}$$

$$\Rightarrow$$
 P(X = 10) \approx 17,6% (calculatrice).

Au total, il y a environ 17,6% de chance pour que le lance-balle envoie 10 balles à droite.

2. Déterminons la probabilité que le lance-balle envoie entre 5 et 10 balles à droite:

Il s'agit de calculer: $P(5 \le X \le 10)$.

$$P(5 \le X \le 10) = P(X \le 10) - P(X \le 4).$$

$$\Rightarrow$$
 P(5 \leq X \leq 10) \approx 58,2% (calculatrice).

Au total, il y a environ 58, 2% de chance pour que le lance-balle envoie entre 5 et 10 balles à droite.

3. Calculons E (X):

D'après le cours: $E(X) = n \cdot p$.

Donc ici nous avons: $E(X) = 20 \times 0,5$

4. Déduisons-en V (X):

D'après le cours: $V(X) = n \cdot p \cdot (1 - p)$.

Donc ici nous avons: $V(X) = 20 \times 0,5 \times 0,5$

=5.