www.freemaths.fr

Maths Expertes Terminale

Arithmétique

CORRIGÉ DE L'EXERCICE

ARITHMÉTIQUE, SYNTHÈSE

10

CORRECTION

Partie A:

1. Montrons que, pour tout entier naturel n, $U_{n+1} = U_n \times M$:

Soient les programmes: • A: " cirque-éveil musical ",

· B: "théâtre-arts plastiques".

Le nombre d'inscrits au programme A durant l'année 2014 + " n+1" est:

$$a_{n+1} = 0, 2 \times a_n + 0, 4 \times b_n + 0, 4 \times a_n$$

0, 2 x $a_n = 20\%$ des inscrits à A, choisissent à nouveau A, l'année suivante 0, 4 x $b_n = 40\%$ des inscrits à A, choisissent le programme B, l'année suivante 0, 4 x $a_n = 1$ les nouveaux inscrits, qui compensent les départs (40%), suivent obligatoirement le programme A.

De même: $b_{n+1} = 0, 4 \times a_n + 0, 6 \times b_n$.

Au total:
$$\begin{cases} a_{n+1} = 0, 6 \times a_n + 0, 4 \times b_n \\ b_{n+1} = 0, 4 \times a_n + 0, 6 \times b_n \end{cases} \iff \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \begin{pmatrix} 0, 6 & 0, 4 \\ 0, 4 & 0, 6 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$

$$\iff U_{n+1} = U_n \times M.$$

2. Montrons que, pour tout entier naturel n, $U_n = (75 + 75 \times 0, 2^n 75 - 75 \times 0, 2^n)$:

Nous allons montrer par récurrence que:

" pour tout entier naturel n: $U_n = (75 + 75 \times 0, 2^n + 75 \times 0, 2^n)$ ".

Initialisation: • $U_0 = (75 + 75 \times 0, 2^{\circ} \quad 75 - 75 \times 0, 2^{\circ})$?

oui car: $(75 + 75 \times 0, 2^{\circ} 75 - 75 \times 0, 2^{\circ}) = (150 0),$

et: $U_0 = (150 \text{ 0})$, d'après l'énoncé.

Donc vrai au rang " 0 ".

Hérédité: Supposons que pour tout entier naturel n:

 $U_n = (75 + 75 \times 0, 2^n - 75 - 75 \times 0, 2^n)$ et montrons qu'alors $U_{n+1} = (75 + 75 \times (0, 2)^{n+1} - 75 - 75 \times (0, 2)^{n+1})$.

Supposons: $U_n = (75 + 75 \times 0, 2^n + 75 - 75 \times 0, 2^n)$, pour un entier naturel n fixé.

(1) =>
$$\begin{cases} a_n = 75 + 75 \times 0, 2^n \\ b_n = 75 - 75 \times 0, 2^n \end{cases} \Rightarrow \begin{cases} 0, 6a_n + 0, 4b_n = \dots \\ 0, 4a_n + 0, 6b_n = \dots \end{cases}$$
 (on remplace)

$$\Rightarrow \begin{cases} a_{n+1} = 75 + 75 \times (0, 2)^{n+1} \\ b_{n+1} = 75 - 75 \times (0, 2)^{n+1} \end{cases}$$

$$=> U_{n+1} = (75 + 75 \times (0, 2)^{n+1} + 75 - 75 \times (0, 2)^{n+1}).$$

Conclusion: Pour tout $n \in IN$, $U_n = (75 + 75 \times 0, 2^n \quad 75 - 75 \times 0, 2^n)$.

3. Déduisons-en la répartition des effectifs à long terme entre les deux programmes:

Pour répondre à cette question, nous allons calculer les limites en $+\infty$ de " a " et de " b ".

- $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} 75 + 75 \times 0, 2^n$ $n \to +\infty$ $n \to +\infty$ = 75 car: 0, 2 \in]0; /[.
- $\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} 75 75 \times 0, 2^n$ $n \to +\infty$ $n \to +\infty$ = 75 car: 0, 2 \in] 0; /[.

Ainsi, à long terme: 50% des effectifs suivra le programme A et 50% des effectifs suivra le programme B. Les effectifs seront donc équirépartis entre les deux programmes: ils s'équilibreront entre les deux programmes.

Partie B:

1. a. Le numéro 111383 peut-il être celui d'un enfant inscrit à l'association ?

Cet enfant est inscrit à l'association ssi: k = 3.

Or:
$$\cdot S = 1 + 1 + 8 + 3 \times (1 + 3) = 22$$

• en divisant 22 par 10, le reste obtenu est k = 2.

Ainsi, comme: k = 2 et $2 \neq 3$, le numéro 111383 ne peut pas être celui d'un enfant inscrit à l'association.

1. b. L'erreur sera-t-elle détectée ?

Pour répondre à cette question, nous allons calculer S_1 (associée à $08C_3C_4C_5k$) et S_2 (associée à $IIC_3C_4C_5k$).

•
$$S_1 = 0 + C_3 + C_5 + 3(8 + C_4) \implies S_1 = C_3 + C_5 + 3C_4 + 24$$
.

•
$$S_2 = I + C_3 + C_5 + 3(I + C_4) \implies S_2 = C_3 + C_5 + 3C_4 + 4$$

Or:
$$S_1 = S_2 + 2 \times 10 \iff S_1 \equiv S_2 [10]$$
.

Donc S_1 et S_2 sont congrus l'un à l'autre modulo " 10 ".

Ainsi: la clé " k " est la même pour S_1 et S_2 et par conséquent l'erreur ne sera pas détectée.

2. a. Montrons le:

- Quand on a " $C_1C_2C_3C_4C_5k$ ": $S_1 = C_1 + C_3 + C_5 + a \times (C_2 + C_4)$.
- Quand on a " $C_1C_2C_4C_3C_5k$ ": $S_2 = C_1 + C_4 + C_5 + a \times (C_2 + C_3)$.

Dans ces conditions, la clé ne détectera pas l'erreur d'interversion des chiffres C_3 et C_4 ssi:

$$S_{1} \equiv S_{2} [10] \iff C_{3} + a \times (C_{2} + C_{4}) \equiv C_{4} + a \times (C_{2} + C_{3})[10]$$

$$\iff C_{3} + a \times C_{4} \equiv C_{4} + a \times C_{3}[10]$$

$$\iff (C_{3} - C_{4}) + a \times (C_{4} - C_{3}) \equiv 0[10]$$

$$\implies (a - 1) (C_{4} - C_{3}) \equiv 0[10].$$

Au total: la clé ne détecte pas l'erreur d'interversion ssi:

$$(a-1)(C_u-C_3)$$
 est congru à 0 modulo $^{\bullet}$ 10 $^{\bullet}$.

2. b. Déterminons les entiers " n " demandés:

Pour répondre à cette question, nous allons dresser un tableau qui donne les restes de la division de $n \cdot p$ par 10.

Pour tout entier naturel $n \in [0; 9]$ et tout entier naturel $p \in [1; 9]$, nous avons:

P	0	1	2	3	4	5	6	7	8	9
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

Au total les entiers n demandés compris entre 0 et 9 sont:

$$n = 0$$
, $n = 2$, $n = 4$, $n = 5$, $n = 6$ et $n = 8$.

2. c. Déduisons-en les valeurs de l'entier $^{\bullet}$ a $^{\bullet}$ qui permettent, grâce à la clé, de détecter systématiquement l'interversion des chiffres C_3 et C_4 :

Nous savons que la clé ne détecte pas l'erreur d'interversion ssi:

$$(a - 1) \cdot (C_4 - C_3) \equiv 0 [10].$$

Or: $n \cdot p \equiv 0$ [10] quand n = 0, 2, 4, 5, 6, 8.

$$n \in \{0; 2; 4; 5; 6; 8\} \iff (a-1) \in \{0; 2; 4; 5; 6; 8\}$$

$$\iff$$
 a $\in \{1;3;5;6;7;9\}.$

Donc la clé ne détecte pas l'erreur quand: $a \in \{1,3,5,6,7,9\}$.

Ainsi, la clé détecte systématiquement l'erreur quand: $a \in \{2, 4, 8\}$.

Au total, les valeurs de l'entier " a " qui permettent grâce à la clé, de détecter systématiquement l'interversion des chiffres C_3 et C_4 sont:

$$a = 2$$
, $a = 4$ et $a = 8$.