www.freemaths.fr

TLE Technologique Mathématiques

Bernoulli & binomiale

CORRIGÉ DE L'EXERCICE

ÇA SONNE OU PAS ???

CORRECTION

1. Justifions que X suit une loi binomiale dont on précisera les paramètres:

Soit l'expérience aléatoire consistant à prendre au hasard 80 personnes qui s'apprêtent à passer le portique de sécurité.

On suppose que le nombre total de voyageurs est suffisamment grand pour que l'on puisse assimiler ce prélèvement à un tirage aléatoire avec remise.

Soient les événements S = " le voyageur fait sonner le portique ", et $\overline{S} = "$ le voyageur ne fait pas sonner le portique ".

On désigne par X la variable aléatoire égale au nombre de personnes faisant sonner le portique, parmi les 80 personnes.

Cette expérience est un schéma de Bernoulli.

Nous sommes en présence de 80 épreuves aléatoires identiques et indépendantes, avec à chaque fois 2 issues possibles: S et \overline{S} .

La variable aléatoire discrète X représentant le nombre de réalisations de S suit donc une loi binomiale de paramètres: n = 80 et p = 2, 192%.

Et nous pouvons noter: $X \rightsquigarrow B(80; 2, 192\%)$.

2. Calculons E (X) et interprétons:

D'après le cours: $E(X) = n \cdot p$.

D'où ici: $E(X) = 80 \times 2$, 192% cad: E(X) = 1, 7536.

Au total: en moyenne sur un groupe de 80 voyageurs, le portique sonne 1,75 fois, donc un peu moins de deux fois.

3. a.
$$P(X \ge 1)$$
?

Soit X la variable aléatoire qui compte le nombre de succès.

Pour tout entier k, $0 \le k \le n$, la probabilité d'obtenir k succès sur n épreuves indépendantes (ou avec remise) est:

P(X=k)=
$$\binom{n}{k}p^{k}$$
. $(I-p)^{(n-k)}$, avec: $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

$$P(X \ge I) = I - P(X = 0) \implies P(X \ge I) \approx 83\%$$
.

La probabilité qu'au moins une personne fasse sonner le portique est d'environ: 83%.

3. b. $P(X \le 5)$?

$$P(X \le 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

+ $P(X = 4) + P(X = 5) \implies P(X \le 5) \approx 99, 2\%.$

La probabilité qu'au maximum 5 personnes fassent sonner le portique est d'environ: 99,2%.

4. La valeur du plus petit entier naturel n tel que P $(X \le n) \ge 90\%$?

It s'agit de: n=3.

freemaths.fr · Mathématiques