www.freemaths.fr

TLE Technologique Mathématiques

Nombres Complexes Forme Trigonométrique

CORRIGÉ DE L'EXERCICE

FORME TRIGONOMÉTRIQUE ?

1

CORRECTION

1. z, et z₂ sont-ils écrits sous forme trigonométrique ?

Soit z un nombre complexe non nul, la forme trigonométrique de z s'écrit:

$$z = r \times (cos(\theta) + i sin(\theta))$$
, avec $r > 0$.

• En ce qui concerne z,:

$$z_{i} = -5\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right).$$

Comme -5 < 0, z, n'est pas écrit ici sous forme trigonométrique.

• En ce qui concerne z₂:

$$z_2 = 2\left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)$$

Comme entre les parenthèses, nous avons " - $i \sin\left(\frac{\pi}{3}\right)$ " au lieu de

" + $i \sin \left(\frac{\pi}{3}\right)$ ", z_2 n'est pas écrit ici sous forme trigonométrique.

Ainsi: z, et z, ne sont pas écrits sous forme trigonométrique.

2. Écrivons z, et z, sous forme trigonométrique:

• En ce qui concerne z,:

$$z_{i} = -5\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$= -5\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)$$

$$= \frac{-5\sqrt{2}}{2} - \left(\frac{5\sqrt{2}}{2}\right)i.$$

Le module de z, est donc:
$$r = \sqrt{\left(\frac{-5\sqrt{2}}{2}\right)^2 + \left(\frac{-5\sqrt{2}}{2}\right)^2}$$
 cad $r = 5$.

Dans ces conditions: $z_i = 5 (\cos \theta + i \sin \theta)$.

Or:
$$z_{i} = \frac{-5\sqrt{2}}{2} - \left(\frac{5\sqrt{2}}{2}\right)i$$
.

D'où:
$$\begin{cases} \frac{-5\sqrt{2}}{2} = 5\cos\theta \\ \frac{-5\sqrt{2}}{2} = 5\sin\theta \end{cases} \iff \begin{cases} \cos\theta = -\frac{\sqrt{2}}{2} \\ \sin\theta = \frac{\sqrt{2}}{2} \end{cases}$$
 cad $\theta = \frac{5\pi}{4} + 2k\pi, k \in \mathbb{Z}$.

Ainsi, sous forme trigonométrique z, s'écrit: $z_i = 5\left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right)$.

• En ce qui concerne z₂:

$$z_2 = 2\left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)$$

$$=2\left(\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right)$$

Ainsi, sous forme trigonométrique z_2 s'écrit: $z_2 = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$.

3. Écrivons z_1 et z_2 sous forme exponentielle:

Sous forme exponentielle, z, et z₂ s'écrivent: $z_1 = 5e^{i\frac{5\pi}{4}}$ et $z_2 = 2e^{-i\frac{\pi}{3}}$.