www.freemaths.fr

TLE Technologique Mathématiques

Nombres Complexes Exercices de Synthèse

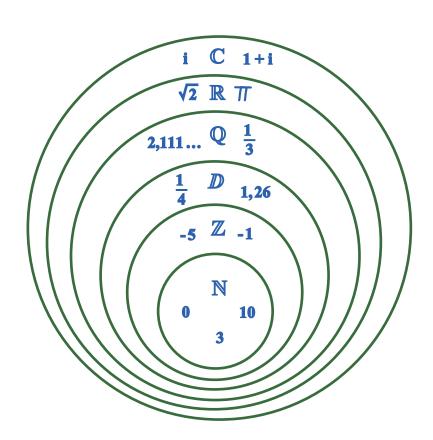
A. Ensemble C des nombres complexes:

1. L'ensemble C:

 Π existe un ensemble C, appelé ensemble des nombres complexes, contenant $\mathbb R$ et pour lequel :

- les règles de calcul restent les mêmes que dans \mathbb{R} ,
- il existe un nombre réel dans \mathbb{C} , noté i, tel que $i^2 = -1$,
- tout élément de \mathbb{C} s'écrit sous la forme $z = x + i \cdot y$ (où x et y sont réels),
- le nombre 0 s'écrit $0 + i \cdot 0$.

2. Schéma:



B. Forme algébrique d'un nombre complexe:

1. Définition:

Tout nombre complexe z peut s'écrire sous forme algébrique:

$$z = x + i \cdot y$$
, $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

2. Propriétés:

• deux nombres complexes z = x + iy et z' = x' + iy' sont égaux ssi:

$$x = x'$$
 et $y = y'$,

- soient z = x + iy et z' = x' + iy': z + z' = (x + x') + i(y + y'),
- soient z = x + iy et z' = x' + iy': $z \cdot z' = (xx' yy') + i(xy' + yx')$,

 (car: $i^2 = -1$)
- x se nomme la partie réelle de z et se note Re (z),
- y se nomme la partie imaginaire de z et se note Im (z).

C. Réel ou imaginaire pur?

Soit $z = x + i \cdot y$, un nombre complexe:

- le nombre z est dit réel si y = 0
- le nombre z est dit imaginaire pur si x = 0.

D. Conjugué d'un nombre complexe:

1. Définition:

Tout nombre complexe z = x + iy admet un nombre conjugué noté \bar{z} avec: $\bar{z} = x - i \cdot y$.

2. Exemples:

- si z = 2 + 3i, alors: $\overline{z} = 2 3i$
- si z = 2 + 4i, alors: $\bar{z} = 2 4i$
- si z = 3, alors: $\overline{z} = 3$
- si z = 7i, alors: $\overline{z} = -7i$.

3. Relations:

Soient z = x + iy et z' = x' + iy', deux nombres complexes:

•
$$\overline{z + z}$$
 = $\overline{z} + \overline{z}$

$$\bullet \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}, z' \neq 0$$

•
$$\overline{z^n} = (\overline{z})^n$$
, $n \in \mathbb{N}$

$$\bullet \ \overline{\mathbf{z} \cdot \mathbf{z}'} = \overline{\mathbf{z}} \cdot \overline{\mathbf{z}'}.$$

4. Propriétés:

$$\cdot \overset{=}{\mathbf{Z}} = \mathbf{Z}$$

•
$$z + \bar{z} = 2x = 2 \text{ Re } (z)$$

$$\cdot z - \overline{z} = 2iy = 2iIm(z)$$

• z est un réel ssi $z = \overline{z}$

• z est un imaginaire pur ssi $z = -\overline{z}$

• $\mathbf{z} \cdot \overline{\mathbf{z}} = \mathbf{x}^2 + \mathbf{y}^2$.

E. Module d'un nombre complexe:

1. Définition:

Soit z = x + iy. Le module de z, noté r = |z|, est le réel positif ou nul:

$$\mathbf{r} = |\mathbf{z}| = \sqrt{x^2 + y^2}.$$

2. Exemples:

• si z = 1 + i: $|z| = \sqrt{2}$ cad $r = \sqrt{2}$

• si z = 1 - i: $|z| = \sqrt{2}$ cad $r = \sqrt{2}$

• si $z = 1 - i\sqrt{3}$: |z| = 2 cad r = 2.

3. Propriétés:

Soient z = x + iy et z' = x' + iy', deux nombres complexes:

 $|z| \ge 0$

 $\cdot |z| = 0 \iff z = 0$

 $\bullet |_{\mathbf{C}} \cdot \mathbf{z}| = \sqrt{\mathbf{C}^2} \cdot |\mathbf{z}|$

 $\cdot \mathbf{z} \cdot \mathbf{z} = x^2 + y^2 = |\mathbf{z}|^2$

$$\cdot |\mathbf{z}| = |\mathbf{z}|$$

$$\bullet |_{\mathbf{Z}} \bullet \mathbf{z}^{\flat}| = |_{\mathbf{Z}}| \cdot |_{\mathbf{Z}^{\flat}}|$$

$$\left|\frac{\mathbf{z}}{\mathbf{z}'}\right| = \frac{|\mathbf{z}|}{|\mathbf{z}'|}, \mathbf{z}' \neq \mathbf{0}$$

•
$$|\mathbf{z}^{\mathbf{n}}| = |\mathbf{z}|^{\mathbf{n}}$$
, $\mathbf{n} \in \mathbb{N}$.

F. Ensemble U des complexes de module 1:

1. Définition:

U est l'ensemble des nombres complexes de module égal à 1:

$$U = \{z \in \mathbb{C} / |z| = 1\}.$$

2. Exemples:

•
$$z = 1$$
.

•
$$z = i$$
.

•
$$z = -i$$
.

•
$$z = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$
.

G. Affixe d'un point:

1. Définition:

Un nombre complexe z = x + iy peut être représenté dans le plan par un point M de coordonnées (x; y): z est appelé affixe du point M.

2. Remarque:

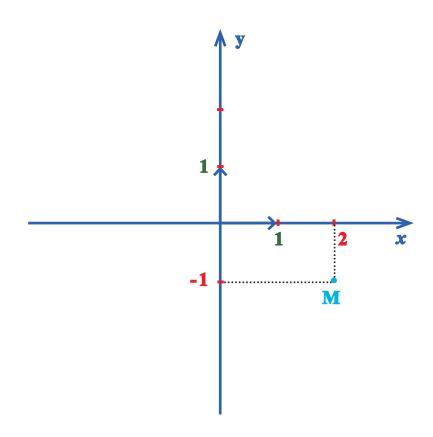
On dit que: le point M est l'image de z.

3. Exemple:

Soit z = 2 - i, un nombre complexe.

Nous pouvons dire alors: • z est l'affixe du point M (2; -1)

• M (2; -1) est l'image de z.



H. Affixe d'un vecteur:

1. Définition:

Soient A et B deux points d'affixes respectives z_A et z_B .

Le vecteur \overrightarrow{AB} a pour affixe le complexe: $\mathbf{Z}_{B} - \mathbf{Z}_{A}$.

2. Exemple:

Soit: $\mathbf{z}_{A} = 3 + 2i$, l'affixe du point A

• $z_B = 2 - 7i$, l'affixe du point B.

Dans ces conditions, le vecteur AB a pour affixe:

$$\overrightarrow{AB}\begin{pmatrix} 2-3\\ -7-2 \end{pmatrix}$$
 cad $\overrightarrow{AB}\begin{pmatrix} -1\\ -9 \end{pmatrix}$.

I. Propriétés:

- 1. Soient A et B deux points d'affixes respectives z_A et z_B .
 - Les points A et B sont confondus ssi: $\mathbf{z}_{A} = \mathbf{z}_{R}$.
 - Le milieu du segment [AB] a pour affixe: $\frac{z_A + z_B}{2}$.
 - La distance entre les points A et B est: $AB = |\mathbf{z}_B \mathbf{z}_A|$.
- 2. Soient $\overrightarrow{\mathbf{U}}$ et $\overrightarrow{\mathbf{V}}$ deux vecteurs ayant pour affixe respectives $\mathbf{z}_{\mathbf{u}}$ et $\mathbf{z}_{\mathbf{v}}$.
 - Les vecteurs $\overrightarrow{\mathbf{U}}$ et $\overrightarrow{\mathbf{V}}$ sont égaux ssi: $\mathbf{z}_{\mathbf{u}} = \mathbf{z}_{\mathbf{v}}$.
 - Le vecteur $\overrightarrow{\mathbf{U}} + \overrightarrow{\mathbf{V}}$ a pour affixe: $\mathbf{z}_{\mathbf{u}} + \mathbf{z}_{\mathbf{v}}$.
- 3. Les points M (z) et M' (z) sont symétriques par rapport à l'axe des abscisses.

J. Comment montrer...?

Soient quatre points $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$.

1. Deux vecteurs parallèles ou colinéaires :

(AB) // (CD) ssi:
$$\frac{\mathbf{z}_{D} - \mathbf{z}_{C}}{\mathbf{z}_{B} - \mathbf{z}_{A}} \in \mathbb{R}$$
.

2. Trois points alignés:

A, B et C sont alignés ssi:
$$\frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}$$
.

3. Deux vecteurs orthogonaux:

(AB)
$$\perp$$
 (CD) ssi: $\frac{z_D - z_C}{z_B - z_A}$ est un imaginaire pur.

4. Égalité entre deux longueurs:

la longueur [AB] = la longueur [AC] ssi:
$$|z_B - z_A| = |z_C - z_A|$$
.

5. Triangle ABC isocèle en A:

Le triangle ABC est isocèle en A lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] cad ssi: $|z_B - z_A| = |z_C - z_A|$.

6. Triangle ABC rectangle en A:

Le triangle ABC est rectangle en A ssi:
$$\frac{z_c - z_A}{z_B - z_A}$$
 est un imaginaire pur.

7. Triangle ABC équilatéral direct:

Le triangle ABC est un triangle équilatéral direct ssi:

$$\frac{\mathbf{z}_{\mathrm{B}} - \mathbf{z}_{\mathrm{A}}}{\mathbf{z}_{\mathrm{C}} - \mathbf{z}_{\mathrm{A}}} = \frac{1}{2} + i \left(\frac{\sqrt{3}}{2}\right).$$

8. Quadrilatère ABCD = losange:

Le quadrilatère ABCD est un losange ssi:

$$\bullet \overrightarrow{AB} = \overrightarrow{DC}$$

$$\bullet |\mathbf{z}_{\mathbf{B}} - \mathbf{z}_{\mathbf{A}}| = |\mathbf{z}_{\mathbf{C}} - \mathbf{z}_{\mathbf{D}}|$$

$$\bullet \overrightarrow{AD} = \overrightarrow{BC}$$

•
$$\overrightarrow{AD} = \overrightarrow{BC}$$
 \iff • $|\mathbf{z}_{D} - \mathbf{z}_{A}| = |\mathbf{z}_{C} - \mathbf{z}_{B}|$

• (BD)
$$\perp$$
 (CA) • $\frac{\mathbf{z}_{A} - \mathbf{z}_{C}}{\mathbf{z}_{D} - \mathbf{z}_{B}}$ est un imaginaire pur.

K. Arguments d'un nombre complexe:

1. Définition :

Soit z un nombre complexe non nul de forme algébrique z = x + iy.

• Il existe des réels θ tels que: $\begin{cases} \cos \theta = \frac{1}{|z|} \\ \sin \theta = \frac{y}{|z|} \end{cases}$

$$\cos \theta = \frac{x}{|z|}$$

$$\sin \theta = \frac{y}{|z|}$$

• Les réels θ vérifiant ce système sont appelées arguments de z.

2. Coordonnées polaires:

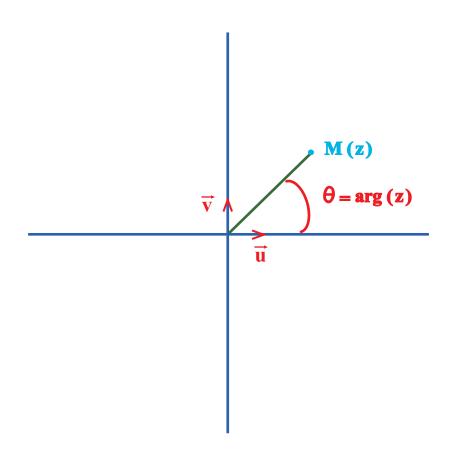
Soit un plan complexe d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Soit un point M (z = x + iy) distinct de O.

Les coordonnées polaires du point M s'écrivent: (|z|; arg(z)).

3. Représentation graphique:

On se place dans un plan complexe d'un repère orthonormé direct (O; \vec{u} , \vec{v}).



4. Propriétés:

Soient z et z' deux nombres complexes non nuls:

•
$$\operatorname{arg}(\bar{z}) = -\operatorname{arg}(z)(2\pi)$$

•
$$arg(-z) = arg(z) + \pi(2\pi)$$

•
$$\operatorname{arg}(-z) = -\operatorname{arg}(z) + \pi(2\pi)$$

• $z \in \mathbb{R} \iff arg(z) = 0(\pi) (z \text{ est un r\'eel})$

•
$$z \in i\mathbb{R} \iff arg(z) = \frac{\pi}{2}(\pi)$$
 (z est un imaginaire pur)

5. Autres propriétés:

Soient z et z' deux nombres complexes non nuls:

•
$$arg(zz') = arg(z) + arg(z')(2\pi)$$

•
$$\operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}\left(z\right)\left(2\pi\right)$$

•
$$\operatorname{arg}\left(\frac{\mathbf{z}^2}{\mathbf{z}}\right) = \operatorname{arg}\left(\mathbf{z}^2\right) - \operatorname{arg}\left(\mathbf{z}\right)\left(2\pi\right)$$

•
$$arg(z^n) = n arg(z)(2\pi)$$
 (avec: $n \in \mathbb{Z}$)

L. Forme trigonométrique d'un nombre complexe:

1. Définition:

Soit z un nombre complexe non nul avec: r = |z| et $\theta = arg(z)(2\pi)$.

La forme trigonométrique de z s'écrit: $z = r \cdot (\cos(\theta) + i \sin(\theta))$.

2. Propriété:

Soient z et z' deux nombres complexes non nuls:

$$\mathbf{z'} = \mathbf{z} \quad \mathbf{ssi} \quad \begin{cases} |\mathbf{z'}| = |\mathbf{z}| \\ & \text{cad} \end{cases} \quad \begin{cases} \mathbf{r'} = \mathbf{r} \\ & \theta' = \theta \ (2\pi) \end{cases}.$$

M. Formules trigonométriques à connaître:

1. Formules d'addition:

Soient a et b deux réels.

- $\cos (a + b) = \cos (a) \cos (b) \sin (a) \sin (b)$
- $\sin (a + b) = \sin (a) \cos (b) + \sin (b) \cos (a)$
- $\cos (a b) = \cos (a) \cos (b) + \sin (a) \sin (b)$
- $\sin (a b) = \sin (a) \cos (b) \sin (b) \cos (a)$.

2. Autres formules:

- $\cos(2a) = \cos^2(a) \sin^2(a)$
- $\sin (2a) = 2 \sin (a) \cos (a)$
- $\cos(2a) = 2\cos^2(a) 1$
- $\cos(2a) = 1 2\sin^2(a)$
- $\cdot \cos^2(a) = \frac{1 + \cos(2a)}{2}$
- $\cdot \sin^2(a) = \frac{1 \cos(2a)}{2} \cdot$

N. Forme exponentielle d'un nombre complexe:

1. Notation si $z = (\cos(\theta) + i \sin(\theta))$:

Pour tout réel θ : $e^{i\theta} = \cos(\theta) + i \sin(\theta)$.

2. Forme exponentielle de $z = r (\cos (\theta) + i \sin (\theta))$:

Soit z un nombre complexe de module r et d'argument arg $(z) = \theta [2\pi]$:

$$z = r e^{i\theta}$$
.

O. Formules de Moivre et d'Euler:

1. Formule de Moivre:

Pour tout réel θ et tout entier naturel n :

$$[r \cdot (\cos(\theta) + i\sin(\theta))]^n = r^n \cdot (\cos(n\theta) + i\sin(n\theta)),$$

ou

$$[\mathbf{r} \cdot \mathbf{e}^{i\theta}]^{\mathbf{n}} = \mathbf{r}^{\mathbf{n}} \cdot \mathbf{e}^{i\mathbf{n}\theta}.$$

2. Formule d'Euler:

Pour tout réel
$$\theta$$
: \bullet cos $(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$

$$\bullet \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$