www.freemaths.fr

TLE Technologique Mathématiques

Nombres Complexes Équations Polynomiales

CORRIGÉ DE L'EXERCICE

POLYNÔME DE DEGRÉ 3

1

CORRECTION

1. Vérifions que * 8 * est solution de l'équation $z^3 - 12z^2 + 48z - 128 = 0$:

"8" est solution de l'équation $z^3 - 12z^2 + 48z - 128 = 0$ ssi:

$$(8)^3 - 12 \times (8)^2 + 48 \times (8) - 128 = 0.$$

Or:
$$(8)^3 - 12 \times (8)^2 + 48 \times (8) - 128 = 8 \times 64 - 12 \times 64 + 6 \times 64 - 128$$

= $2 \times 64 - 128$
= 0 .

Ainsi: "8" est bien une solution évidente de l'équation.

2. Résolvons l'équation z^3 - $12z^2$ + 48z - 128 = 0 dans C:

$$z^3 - 12z^2 + 48z - 128 = 0 \iff (z - 8)(az^2 + bz + c) = 0$$

• Déterminons a, b et c:

$$(z-8)(az^2+bz+c)=0 \iff az^3+bz^2+cz-8az^2-8bz-8c=0$$

 $\iff az^3+(b-8a)z^2+(c-8b)z-8c=0.$

Par identification avec l'équation d'origine, nous avons:

$$\begin{cases} a = 1 \\ b - 8a = -12 \\ c - 8b = 48 \\ -8c = -128 \end{cases}$$
 cad
$$\begin{cases} a = 1 \\ b = -4 \\ c = 16 \end{cases}$$

Dans ces conditions: $z^3 - 12z^2 + 48z - 128 = 0 \iff (z - 8)(z^2 - 4z + 16) = 0$.

• Déterminons les racines de l'équation z^2 - 4z + 16 = 0:

Calculons $\Delta = b^2 - 4ac$.

Ici: a = 1, b = -4 et c = 16.

D'où: $\Delta = -48$.

Or: $-48 = (4\sqrt{3}i)^2$.

D'où deux solutions dans C: $z_1 = \frac{4 - 4\sqrt{3}i}{2}$ cad $z_2 = 2 - (2\sqrt{3})i$, $z_2 = \frac{4 + 4\sqrt{3}i}{2}$ cad $z_2 = 2 + (2\sqrt{3})i$.

•
$$z_2 = \frac{4 + 4\sqrt{3}i}{2}$$
 cad $z_2 = 2 + (2\sqrt{3})i$

Conclusion:

L'équation z^3 - $12z^2$ + 48z - 128 = 0 admet trois solutions dans C qui sont:

•
$$z_i = 2 - (2\sqrt{3})i$$
,

•
$$z_2 = 2 + (2\sqrt{3})i$$

•
$$z_3 = 8$$
.