www.freemaths.fr

TLE Technologique Mathématiques

(STI2D & STL)

Convexité & Concavité

CORRIGÉ DE L'EXERCICE

ÉTUDIER LA CONVEXITÉ

9

CORRECTION

1. Calculons f'(x) et f''(x) sur [-20; 20]:

Ici:
$$f(x) = (-2x + 30) e^{0.2x-3}$$
, pour tout $x \in [-20; 20]$.

D'après l'énoncé f est deux fois dérivables sur [-20; 20].

Dans ces conditions, nous pouvons calculer f 'et f '' pour tout $x \in [-20; 20]$:

•
$$f'(x) = (-2) \times (e^{0,2x-3}) + (-2x + 30) \times (0, 2 e^{0,2x-3})$$

= $(-0, 4x + 4) e^{0,2x-3}$.

•
$$f''(x) = (-0, 4) \times (e^{0, 2x-3}) + (-0, 4x + 4) \times (0, 2e^{0, 2x-3})$$

= $(-0, 08x + 0, 4) e^{0, 2x-3}$.

Ainsi, pour tout $x \in [-20, 20]$:

$$f'(x) = (-0, 4x + 4) e^{0,2x-3}$$
 et $f''(x) = (-0, 08x + 0, 4) e^{0,2x-3}$.

- 2. Étudions le sens de variation de f et dressons le tableau de variation:
 - a. Sens de variation de f:

Nous allons distinguer 2 cas pour tout $x \in [-20; 20]$:

• l^{er} cas: $f'(x) \leq 0$.

$$f'(x) \le 0$$
 ssi $(-0, 4x + 4) e^{0,2x-3} \le 0$ cad ssi: $x \ge 10$ ($e^{0,2x-3} > 0$).

• 2^e cas: $f'(x) \ge 0$.

$$f'(x) \ge 0$$
 ssi $(-0, 4x + 4) e^{0, 2x-3} \ge 0$ cad ssi: $x \le 10$ (e-0,5x > 0).

Ainsi: • f est croissante sur [-20; 10],

• f est décroissante sur [10; 20].

b. Tableau de variation de f:

Nous avons le tableau de variation suivant:

x	-20		10	20
f'		+	0	-
f	a		1 b	C

Avec:
$$a = f(-20) \implies a = 70 e^{-7}$$
,

•
$$b = f(10) \implies b = 10 e^{-1}$$
,

•
$$c = f(20) \implies c = -10 e$$
.

3. Étudions la convexité de la fonction f:

D'après le cours: • f est concave sur un intervalle I ssi:

pour tout
$$x \in I$$
, $f''(x) \leq 0$.

• f est convexe sur un intervalle I'ssi:

pour tout
$$x \in I'$$
, $f''(x) \ge 0$.

Or ici, pour tout $x \in [-20; 20]$: $f''(x) = (-0, 08x + 0, 4) e^{0,2x-3}$.

Dans ces conditions:
$$f''(x) \le 0$$
 ssi: $-0.08x + 0.4 \le 0$ cad: $x \ge 5.6$ $f''(x) \ge 0$ ssi: $-0.08x + 0.4 \ge 0$ cad: $x \le 5.6$ (car pour tout $x \in IR$, $e^{0.2x - 3} > 0$)

- Ainsi: f est convexe sur I' = [-20; 5],
 - f est concave sur I = [5; 20].