www.freemaths.fr

TLE Technologique Mathématiques

Fonction inverse Dérivées & Variations

CORRIGÉ DE L'EXERCICE

CORRECTION

D'après le cours, nous savons que:

• le taux de variation ou taux d'accroissement de f entre a et b = a + h

$$(h \neq 0)$$
 est: $\mathcal{T}(h) = \frac{f(a+h) - f(a)}{h}$,

- f est dérivable en " a " ssi: $\lim_{h\to 0} \mathcal{T}(h) = f$, f étant un nombre réel fini,
- le nombre dérivé de f en " a " est: $f'(a) = \lim_{h \to 0} \mathcal{T}(h)$.

1.
$$f(x) = -2x^2 + 5$$
 et $a = 4$:

a. L'ensemble de définition:

L'ensemble de définition est: Df = IR.

b. Exprimons, en fonction de h, le taux de variation de f entre a et a + h:

Ici:
$$a = 4 \in \mathbb{R}$$
 et $a + h = 4 + h \in \mathbb{R}$ $(h \neq 0)$.

Dans ces conditions:
$$\frac{f(a+h)-f(a)}{h} = \frac{f(4+h)-f(4)}{h}$$
$$= \frac{(-2(4+h)^2+5)-(-2\times(4)^2+5)}{h}$$

freemaths.fr • Mathématiques

Fonction inverse : dérivées & variations

$$= \frac{-2(16 + h^2 + 8h) + 32}{h}$$
$$= h + 8.$$

Ainsi, le taux de variation demandé est: $\mathcal{C}(h) = h + 8$.

c. Calculons la limite de T(h) quand h tend vers 0:

$$\lim_{h \to 0} C(h) = \lim_{h \to 0} h + 8 = 8.$$

D'où:
$$\lim_{h\to 0} \mathcal{T}(h) = 8.$$

d. Déduisons-en que f est dérivable en a = 4 et précisons la valeur de f'(4):

- Comme $\lim_{t \to 0} C(h) = 8$ (nombre réel fini): f est dérivable en a = 4.
- La valeur de f'(4) est: f'(4) = 8.

$$2 f(x) = x^2 + 5x$$
 et $a = -2$:

a. L'ensemble de définition:

L'ensemble de définition est: Df = IR.

b. Exprimons, en fonction de h, le taux de variation de f entre a et a + h:

Ici:
$$a = -2 \in \mathbb{R}$$
 et $a + h = -2 + h \in \mathbb{R}$ $(h \neq 0)$.

Dans ces conditions:
$$\frac{f(a+h)-f(a)}{h} = \frac{f(-2+h)-f(-2)}{h}$$

$$= \frac{((-2+h)^2 + 5(-2+h)) - ((-2)^2 + 5 \times (-2))}{h}$$

$$= \frac{((4+h^2 - 4h) - 10 + 5h) - (4-10)}{h}$$

$$= h + 1.$$

Ainsi, le taux de variation demandé est: $\mathcal{C}(h) = h + l$

c. Calculons la limite de T(h) quand h tend vers 0:

$$\lim_{h\to 0} \mathbf{C}(h) = \lim_{h\to 0} h + l = l.$$

D'où:
$$\lim_{h\to 0} \mathcal{T}(h) = 1$$
.

- d. Déduisons-en que f est dérivable en a = -2 et précisons la valeur de f '(-2):
- Comme $\lim_{h\to 0} \mathcal{T}(h) = I$ (nombre réel fini): f est dérivable en a = -2.
- La valeur de f'(-2) est: f'(-2) = 1.
- 3. $f(x) = 3x^2 4x + 1$ et a = 2:
 - a. L'ensemble de définition:

L'ensemble de définition est: Df = IR.

b. Exprimons, en fonction de h, le taux de variation de f entre a et a + h:

Ici:
$$a=2 \in \mathbb{R}$$
 et $a+h=2+h \in \mathbb{R}$ $(h \neq 0)$.

Dans ces conditions:
$$\frac{f(a+h)-f(a)}{h} = \frac{f(2+h)-f(2)}{h}$$

$$= \frac{(3(2+h)^2-4(2+h)+1)-(3\times(2)^2-4\times(2)+1)}{h}$$

$$= \frac{(3(4+h^2+4h)-8-4h+1)-(12-8+1)}{h}$$

$$= 3h+8.$$

Ainsi, le taux de variation demandé est: $\mathcal{C}(h) = 3h + 8$.

c. Calculons la limite de T(h) quand h tend vers 0:

$$\lim_{h\to 0} C(h) = \lim_{h\to 0} 3h + 8 = 8.$$

D'où:
$$\lim_{h\to 0} \mathcal{T}(h) = 8.$$

d. Déduisons-en que f est dérivable en a = 2 et précisons la valeur de f'(2):

- Comme $\lim_{h\to 0} C(h) = 8$ (nombre réel fini): f est dérivable en a = 2.
- La valeur de f'(2) est: f'(2) = 8.

4.
$$f(x) = \frac{2}{x+1}$$
 et $a = \theta \ (\theta \neq -1)$:

a. L'ensemble de définition:

L'ensemble de définition est: $Df = IR - \{-1\}$.

b. Exprimons, en fonction de h, le taux de variation de f entre a et a + h:

Ici:
$$a = \theta \in Df$$
 et $a + h = \theta + h \in Df$ $(h \neq 0)$.

Dans ces conditions:
$$\frac{f(a+h)-f(a)}{h} = \frac{f(\theta+h)-f(\theta)}{h}$$

$$=\frac{\left(\frac{2}{(\theta+h)+1}\right)-\left(\frac{2}{\theta+1}\right)}{h}$$

$$=\frac{\frac{2(\theta+1)-2(\theta+h+1)}{(\theta+h+1)(\theta+1)}}{h}$$

$$=\frac{-2}{(\theta+h+1)(\theta+1)}$$

Ainsi, le taux de variation demandé est:
$$\mathcal{T}(h) = \frac{-2}{(\theta + h + 1)(\theta + 1)}$$

c. Calculons la limite de T(h) quand h tend vers 0:

$$\lim_{h \to 0} \widetilde{C}(h) = \lim_{h \to 0} \frac{-2}{(\theta + h + 1)(\theta + 1)} = \frac{-2}{(\theta + 1)^2}$$

D'où:
$$\lim_{h\to 0} \mathcal{C}(h) = \frac{-2}{(\theta+1)^2}$$

d. Déduisons-en que f est dérivable en $a = \theta$ et précisons $f'(\theta)$:

• Comme $\lim_{h\to 0} \mathcal{T}(h) = \frac{-2}{(\theta + 1)^2}$ (nombre réel fini): f est dérivable en $a = \theta$.

• La valeur de $f'(\theta)$ est: $f'(\theta) = \frac{-2}{(\theta + I)^2}$