www.freemaths.fr

TLE Technologique Mathématiques

Fonction inverse Dérivées & Variations

CORRIGÉ DE L'EXERCICE

ÉQUATIONS RÉDUITES DE TANGENTES!

2

CORRECTION

D'après le cours, nous savons que: la tangente Δ en A(a; f(a)) a pour équation réduite y = f'(a)(x-a) + f(a).

1.
$$f(x) = \frac{3}{x} + 10x$$
, $f'(x) = -\frac{3}{x^2} + 10$ et $a = 4$:

•
$$\mathfrak{D}_f = IR^*$$
.

• f est dérivable sur IR* et f' $(x) = -\frac{3}{x^2} + 10$.

•
$$f(a) = f(4) = \frac{163}{4}$$

• f '(a) = f '(4) = $\frac{157}{160}$ = pente de la tangente Δ au point A.

D'où l'équation réduite de la tangente Δ au point A (a; f (a)) est:

$$y = \frac{157}{160}(x-4) + \frac{163}{4}$$
 cad $y = \frac{157}{160}x + \frac{1573}{40}$

Notons que le coefficient directeur de la tangente Δ au point A (5; $\frac{163}{4}$)

est égal à:
$$f'(4) = \frac{157}{160}$$

freemaths.fr · Mathématiques

Fonction inverse: dérivées & variations

2.
$$f(x) = 3\sqrt{x} + x^4 - \frac{4}{x}$$
, $f'(x) = \frac{3}{2\sqrt{x}} + 4x^3 + \frac{4}{x^2}$ et $a = 5$:

•
$$\mathfrak{D}_f =]0; +\infty [.$$

• f est dérivable sur] 0; +\infty [et f'(x) =
$$\frac{3}{2\sqrt{x}} + 4x^3 + \frac{4}{x^2}$$
.

•
$$f(a) = f(5) = 3\sqrt{5} + 3/24, 2$$

•
$$f$$
 '(a) = f '(5) = $\frac{3}{2\sqrt{5}}$ + 500, 16 = pente de la tangente Δ au point A.

D'où l'équation réduite de la tangente Δ au point A (a; f(a)) est:

$$y = \left(\frac{3}{2\sqrt{5}} + 500, 16\right)(x - 5) + (3\sqrt{5} + 3124, 2)$$

cad
$$y = \left(\frac{3}{2\sqrt{5}} + 500, 16\right)x + \left(3\sqrt{5} - \frac{15}{2\sqrt{5}} + 623, 4\right)$$

Notons que le coefficient directeur de la tangente Δ au point

A (5;
$$3\sqrt{5} + 3/24,2$$
) est égal à: $f'(5) = \frac{3}{2\sqrt{5}} + 500, 16$.