www.freemaths.fr

TLE Technologique Mathématiques

(STI2D & STL)

« exp » : Études de fonctions

CORRIGÉ DE L'EXERCICE

FONCTION AVEC EXPONENTIELLE

11

CORRECTION

Partie A:

1. Montrons que, pour tout $x \in [0; 4]$, $f'(x) = (-2, 16x + 2, 16) e^{-0.6x}$:

lci:
$$f(x) = (3, 6x + 2, 4) e^{-0, 6x} - 1, 4$$
 (u x v) - 1, 4
• $Df = [0; 4]$.

Posons:
$$f = f_1 \times f_2 + f_3$$
, avec: $f_1(x) = 3$, $6x + 2$, 4 , $f_2(x) = e^{-0.6x}$ et $f_3(x) = -1$, 4 .

f est dérivable sur [0; 4] car f_1 , f_2 et f_3 sont dérivables sur [0; 4].

Ainsi, nous pouvons calculer f' pour tout $x \in [0; 4]$.

Pour tout $x \in [0; 4]$:

$$f'(x) = (3,6) \times (e^{-0,6x}) + (3,6x + 2,4) \times (-0,6e^{-0,6x}) \qquad (u' \times v + u \times v')$$

$$= 3,6e^{-0,6x} - 2,16xe^{-0,6x} - 1,44e^{-0,6x}$$

$$= (-2,16x + 2,16)e^{-0,6x}.$$

Au total, pour tout $x \in [0; 4]$, nous avons bien: $f'(x) = (-2, 16x + 2, 16) e^{-0, 6x}$.

2. a. Etudions le signe de f'(x) sur [0; 4]:

Nous allons distinguer 3 cas pour tout $x \in [0; 4]$:

freemaths.fr • Mathématiques

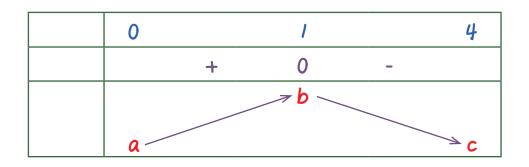
Exponentielle: Études de fonctions

• 1^{er} cas: f'(x) = 0. f'(x) = 0 ssi -2, 16x + 2, 16 = 0, cad: x = 1. (pour tout $x \in \mathbb{R}, e^{-0.6x} > 0$) • $2^{\text{ème}}$ cas: f'(x) < 0. f'(x) < 0 ssi -2, 16x + 2, 16 < 0, cad: $x \in [1; 4]$. (pour tout $x \in \mathbb{R}, e^{-0.6x} > 0$) • $3^{\text{ème}}$ cas: f'(x) > 0. f'(x) > 0 ssi -2, 16x + 2, 16 > 0, cad: $x \in [0; 1[$. (pour tout $x \in IR$, $e^{-0.6x} > 0$) Au total: • f est croissante sur [0; 1], (car sur [0; 1], $f'(x) \ge 0$) • f est décroissante sur [1; 4].

2. b. Dressons le tableau de variations de f sur [0; 4]:

(car sur [1; 4], $f'(x) \leq 0$)

Sur [0; 4], le tableau de variations de f est le suivant:



Avec:
$$a = f(0) \implies a = 1$$
,
 $b = f(1) \implies b = 6e^{-0.6} - 1.4 \approx 1.89$,
 $c = f(4) \implies c = 16.8e^{-2.4} - 1.4 \approx 0.12$.

3. a. Calculons la valeur exacte de $\int_0^4 f(x) dx$:

Ici, il s'agit de calculer: $I = \int_0^4 f(x) dx$.

f est continue sur [0; 4], elle admet donc des primitives sur [0; 4] et par conséquent: I existe.

$$I = \int_0^4 f(x) dx$$

$$= [F(x)]_0^4$$

$$= [(-6x - 14) e^{-0.6x} - 1.4x]_0^4$$

$$= 8.4 - 38e^{-2.4}.$$

Au total, une valeur exacte de I est: $I = 8, 4 - 38e^{-2, 4}$.

3. b. Déterminons une valeur approchée de I:

Une valeur approchée de I est: $I \approx 4,95$.

Partie B:

1. Montrons que
$$\int_0^{0,5} g(x) dx = \frac{1}{6}$$
:

Ici, il s'agit de calculer: $J = \int_0^{0.5} g(x) dx$.

g est continue sur [0;0,5], elle admet donc des primitives sur [0;0,5] et par conséquent: J existe.

$$J = \int_0^{0.5} g(x) dx$$

$$= \int_0^{0.5} (4x^2 - 4x + 1) dx$$

$$= \left[\frac{4}{3} x^3 - 2x^2 + x \right]_0^{0.5}$$

$$= \frac{4}{3} (0.5)^3 - 2 (0.5)^2 + 0.5$$

$$= \frac{4}{3} \times \left(\frac{1}{8} \right) - 2 \times \left(\frac{1}{4} \right) + \frac{1}{2}$$

$$= \frac{1}{6}$$

Au total, nous avons bien: $J = \frac{1}{6}$

2. Calculons une valeur approchée de l'aire, en unités d'aire, de ce domaine:

L'aire demandée A est égale à deux fois l'aire du domaine colorié située au dessus de l'axe des abscisses.

Ainsi:
$$\mathbf{A} = 2 \times \left(\int_0^4 f(x) \, dx - \int_0^{0.5} g(x) \, dx \right)$$

= $2 \times (\mathbf{I} - \mathbf{J})$.

D'où:
$$\mathcal{A} \approx 2 \times \left(4,95 - \frac{1}{6}\right)$$

 $\approx 9,57.$

Au total, une valeur approchée de l'aire du domaine colorié est:

 $A \approx 9,57$ unités d'aire.

freemaths.fr · Mathématiques

Exponentielle: Études de fonctions