www.freemaths.fr

Spé Maths Terminale

Fonctions Cosinus & Sinus

CORRIGÉ DE L'EXERCICE

SENS DE VARIATION D'UNE FONCTION

CORRECTION

1. Déterminons la valeur de " m ":

Pour que f soit bien définie, il faut que: $\cos(x) + \sin(x) \neq 0$.

Or
$$cos(x) + sin(x) \neq 0$$
 ssi: $x \neq -\frac{\pi}{4}$.

Ainsi,
$$f$$
 est définie sur: $I = \left[-\frac{\pi}{4}, \frac{3\pi}{4} \right]$ et donc $m = -\frac{\pi}{4}$.

2. Calculons la dérivée de f:

$$f$$
 est dérivable sur $\left] -\frac{\pi}{4}; \frac{3\pi}{4} \right]$.

Dans ces conditions, pour tout $x \in \left] -\frac{\pi}{4}; \frac{3\pi}{4} \right]$:

$$f'(x) = \frac{\cos(x) \times (\cos(x) + \sin(x)) - \sin(x) \times (-\sin(x) + \cos(x))}{[\cos(x) + \sin(x)]^2}$$

$$= \frac{[\cos(x)]^2 + [\sin(x)]^2}{[\cos(x) + \sin(x)]^2}$$

$$= \frac{1}{[\cos(x) + \sin(x)]^2}$$

Ainsi, pour tout
$$x \in \left] - \frac{\pi}{4}, \frac{3\pi}{4} \right]$$
: $f'(x) = \frac{1}{[\cos(x) + \sin(x)]^2}$

3. Dressons le tableau de variation de f:

Nous avons le tableau de variations de f suivant:

x	- π	<u>3π</u> 4
f'(x)		+
f(x)		<i>></i>

4. Déduisons-en le sens de variations de f:

Sur
$$\left[-\frac{\pi}{4}; \frac{3\pi}{4} \right]$$
: $f'(x) > 0$.

Ainsi: f est strictement croissante sur $\left[-\frac{\pi}{4}, \frac{3\pi}{4} \right]$.