www.freemaths.fr

Spé Maths Terminale

Suites arithmético-géométriques

CORRIGÉ DE L'EXERCICE

L'UNIVERSITÉ

CORRECTION

1. a. Estimons le nombre d'étudiants en juin 2017:

En septembre 2016, il y a $U_0 = 27500$ étudiants.

Or, 150 étudiants démissionnent entre le 1er septembre et le 30 juin cad au cours de l'année universitaire.

Dans ces conditions, le nombre d'étudiants en juin 2017 est de:

Ainsi, le nombre d'étudiants en juin 2017 est de: 27350.

1. b. Estimons le nombre d'étudiants à la rentrée de septembre 2017:

D'après l'énoncé: " les effectifs constatés à la rentrée de septembre connaissent une augmentation de 4% par rapport à ceux du mois de juin qui précède ".

Il s'agit de calculer U,

$$U_1 = (U_0 - 150) \times (1 + 4\%) \iff U_1 = 27350 \times 1,04$$

=> $U_2 = 28444$ étudiants.

Ainsi, le nombre d'étudiants à la rentrée de septembre 2017 est de:

$$U_1 = 28444.$$

2. Justifions que, pour tout entier naturel n, $U_{n+1} = 1$, 04 $U_n - 156$:

• D'après l'énoncé, en septembre 2016, il y a 27500 étudiants.

D'où: $U_0 = 27500$ étudiants.

• De plus, chaque année, entre septembre et juin, 150 étudiants démissionnent et les effectifs à la rentrée de septembre connaissent une augmentation de 4% par rapport à ceux du mois de juin qui précède.

Soient: • U_{n+1} , le nombre d'étudiants à la rentrée de septembre (2016 + (n+1)),

• U_n , le nombre d'étudiants à la rentrée de septembre (2016 + (n)).

Pour tout entier naturel n, le nombre d'étudiants U_{n+1} est égal au nombre d'étudiants U_n diminué de 150 étudiants et (le résultat U_n - 150) augmenté de 4%.

Donc pour tout entier naturel n:

$$U_{n+1} = (U_n - 150) \times (1 + 4\%) \iff U_{n+1} = 1,04 U_n - 156.$$

3. Recopions et complétons les lignes L_s , L_g , L_g et L_g de l'algorithme:

Les lignes L_5 , L_6 , L_7 et L_9 complétées sont les suivantes:

• L_5 :

Tant que $U \le 33000$ faire

• L_6 :

n prend la valeur n+1• L_7 :

U prend la valeur 1,04 U-156• L_9 :

Afficher 2016+n

4. a. Recopions et complétons le tableau:

Le tableau complété est le suivant:

	Initialisation	Étape 1	Étape 2	Étape 3	Étape 4	Étape 5	Étape 6
Valeur de n	0	1	2	3	4	5	6
Valeur de U	27500	28444	29426	30 447	3/509	32613	33762
	2016	2017	2018	2019	2020	2021	2022

Notons que l'établissement ne pourra pas accueillir plus de 33000 étudiants (capacité maximale).

4. b. Donnons la valeur affichée en sortie de cet algorithme:

Nous nous arrêtons à l'étape 6 car c'est à partir de cette étape que l'établissement dépassera sa capacité maximale de 33 000 étudiants.

En effet: 33762 étudiants > 33000 étudiants.

Ainsi, la valeur affichée en sortie de cet algorithme est de:

5. a. Montrons que la suite (V_n) est géométrique et déterminons V_0 et q:

$$V_n = U_n - 3900 \iff V_{n+1} = U_{n+1} - 3900$$
 $\iff V_{n+1} = (1,04 U_n - 156) - 3900 (1).$

Or:
$$V_0 = U_0 - 3900 \implies V_0 = 23600$$
 et $U_n = V_n + 3900$.

Ainsi: (1)
$$\iff$$
 $V_{n+1} = (1,04 [V_n + 3900] - 156) - 3900$
 \implies $V_{n+1} = 1,04 V_n$.

Par conséquent, (V_n) est bien une suite géométrique de raison q = 1,04 et de premier terme $V_0 = 23600$.

5. b. Déduisons-en que, pour tout entier n, $U_n = 23600 \times (1,04)^n + 3900$:

Nous savons que:
$$*V_n = 23600 \times (1,04)^n$$
 (d'après le cours) $*U_n = V_n + 3900$.

D'où:
$$U_n = 23600 \times (1,04)^n + 3900.$$

5. c. c1. Déterminons la limite de la suite (U_n) :

$$\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} 23600 \times (1,04)^n + 3900$$

 $= +\infty \quad \text{car:} \quad \lim_{n \to +\infty} (1,04)^n = +\infty, \quad \text{car:} \quad 1,04 > 1.$

La suite (U_n) est donc: divergente (cad pas convergente).

5. c. c2. Interprétation du résultat:

Cela signifie qu'au bout de n années (" n " très grand), le nombre d'étudiants sera infini et explosera ainsi la capacité maximale de l'établissement.