www.freemaths.fr

Spé Maths Terminale

Raisonner par Récurrence

CORRIGÉ DE L'EXERCICE

NATURE D'UNE SUITE, RÉCURRENCE

1

CORRECTION

1. Montrons que la suite (U_n) admet m=0 comme minorant strict:

D'après le cours, la suite (U_n) est minorée par m ssi, pour tout entier naturel n: $U_n \ge m$.

Nous allons montrer par récurrence que:

" pour tout entier naturel n: $U_n > 0$ ".

Initialisation: • $U_0 = 4 > 0$.

Donc vrai au rang * 0 *.

•
$$U_1 = \sqrt{1 + 2 \times 4} - 1 = 2 > 0$$
.

Donc vrai au rang 11.

Hérédité: Soit $n \in IN$, supposons que $U_n > 0$ et montrons qu'alors $U_{n+1} > 0$.

Supposons: $U_n > 0$, pour un entier naturel n fixé.

(1)

$$(I) \implies 2 U_n > 0$$

$$\implies I + 2 U_n > I$$

$$\implies \sqrt{I + 2 U_n} > \sqrt{I}$$

$$\implies \sqrt{I + 2 U_n} - I > I - I$$

$$\implies U_{n+1} > 0.$$

Conclusion: Pour tout entier $n \in IN$, $U_n > 0$.

Ainsi: la suite (U_n) est bien strictement minorée par m=0.

2. Prouvons que la suite (U_n) est strictement décroissante, pour tout $n \in IN$:

Pour cela, nous allons déterminer le signe de U_{n+1} - U_n , pour tout $n \in IN$.

$$U_{n+1} - U_n = \sqrt{1 + 2 U_n} - 1 - (\sqrt{1 + 2 U_{n-1}} - 1)$$

$$= \sqrt{1 + 2 U_n} - \sqrt{1 + 2 U_{n-1}}.$$

Dans ces conditions, la suite (U_n) est strictement décroissante ssi:

$$U_{n+1} - U_n < 0$$
 cad $\sqrt{1 + 2U_n} - \sqrt{1 + 2U_{n-1}} < 0$.

$$\sqrt{1+2U_{n}} - \sqrt{1+2U_{n-1}} < 0 \iff \sqrt{1+2U_{n}} < \sqrt{1+2U_{n-1}}$$

$$\iff 1+2U_{n} < 1+2U_{n-1}$$

$$\iff 2U_{n} < 2U_{n-1}$$

$$\iff U_{n} - U_{n-1} < 0.$$

Donc le signe de U_{n+1} - U_n dépend du signe de U_n - U_{n-1} qui dépend du signe de U_{n-1} - U_{n-2} ... qui dépend du signe de U_1 - U_0 .

Or:
$$U_1 - U_2 = 2 - 4 = -2 < 0$$
.

Ainsi: $U_{n+1} - U_n < 0$, et donc (U_n) est strictement décroissante sur IN.

3. Déduisons-en la nature de (U_n) :

D'après le cours, toute suite décroissante et minorée est convergente.

Or ici: • (U_n) est strictement minorée par m=0

• (Un) est strictement décroissante.

Donc: OUI, la suite (U_n) est convergente.

Elle admet pour limite f telle que: $f = \sqrt{1 + 2f} - 1$.

$$P = \sqrt{1 + 2P} - 1 \iff P^2 = 0 \text{ cad}$$
: $P = 0$.

En définitive, la suite (U_n) est convergente et converge vers f = 0.