www.freemaths.fr

Spé Maths Terminale

Limite d'une Suite

A. Variations et limites d'une suite arithmétique:

Soit la suite arithmétique (U_n) définie sur **N** et de raison r, nous avons:

r > 0	(U _n) est croissante sur IN	$\lim_{n \to +\infty} \mathbf{U}_n = +\infty$	Divergente
r < 0	(U _n) est décroissante sur N	$\lim_{n \to +\infty} \mathbf{U}_n = -\infty$	Divergente
r = 0	$(\mathbf{U_n})$ est constante sur \mathbb{N} $(\mathbf{U_n} = \mathbf{c}, \mathbf{c} \in \mathbb{R})$	$\lim_{n \to +\infty} \mathbf{U}_n = \mathbf{c}$	Convergente

B. Variations et limites d'une suite géométrique:

Soit la suite géométrique (U_n) définie sur N, de premier terme U_0 et de raison q, distinguons deux cas :

1er cas: Si $U_0 > 0$.

q = 0	(U _n) est constante sur IN (à partir du rang 1)	Convergente	
q∈]0,1[(U _n) est décroissante sur IN	Convergente	
q = 1	(U _n) est constante sur IN	Convergente	

q > 1	(U _n) est croissante sur IN	Divergente
q∈]-1,0[(U _n) est une suite alternée sur IN (ni croissante, ni décroissante)	Convergente
q≤-1	(U _n) est une suite alternée sur IN (ni croissante, ni décroissante)	La limite n'existe pas

2° cas: Si $\mathbf{U_0} < \mathbf{0}$.

q = 0	(U _n) est constante sur <i>I</i> N (à partir du rang 1)	Convergente
q∈]0,1[(U _n) est croissante sur IN	Convergente
q = 1	(U _n) est constante sur N	Convergente
q>1	(U _n) est décroissante sur IN	Divergente
q∈]-1,0[(U _n) est une suite alternée sur IN (ni croissante, ni décroissante)	Convergente
q≤-1	(U _n) est une suite alternée sur <i>I</i> N (ni croissante, ni décroissante)	La limite n'existe pas

C. Limites infinies en $+\infty$:

1. Notations:

•
$$\lim_{n \to +\infty} U_n = +\infty$$

•
$$\lim_{n \to +\infty} U_n = -\infty$$
.

2. Limites admises à connaître:

•
$$\lim_{n \to +\infty} \sqrt{n} = +\infty$$

•
$$\lim_{n \to +\infty} n^p = +\infty$$
 ($p \in \mathbb{N}^*$)

•
$$\lim_{n \to +\infty} e^n = +\infty$$

•
$$\lim_{n \to +\infty} \ln(n) = +\infty$$

•
$$\lim_{n \to +\infty} \frac{e^n}{n} = +\infty$$
.

3. Divergente?

La suite (U_n) est divergente quand:

•
$$\lim_{n \to +\infty} (\mathbf{U}_n) = -\infty$$

ou

•
$$\lim_{n \to +\infty} (\mathbf{U}_n) = +\infty$$
.

D. Limites finies en $+\infty$:

1. Notation:

•
$$\lim_{n \to +\infty} U_n = f$$
.

2. Limites admises à connaître:

•
$$\lim_{n \to +\infty} \frac{1}{n^p} = 0$$
 $(p \in \mathbb{N}^*)$

$$\begin{array}{c}
\mathbf{lim} \\
\mathbf{n} \to +\infty
\end{array} \frac{1}{\mathbf{e}^{\mathbf{n}}} = \mathbf{0}$$

•
$$\lim_{n \to +\infty} \frac{n^p}{e^n} = 0$$
 (p $\in \mathbb{N}^*$)

•
$$\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$$

•
$$\lim_{n \to +\infty} \frac{\ln (n)}{n^p} = 0$$
 (p $\in \mathbb{N}^*$).

3. Convergente?

La suite (U_n) est convergente quand:

$$\lim_{n \to +\infty} U_n = f, f \text{ \'etant un nombre fini.}$$

E. Propriété importante:

La limite d'une suite (U_n) est unique.

F. Théorèmes à connaître:

1. Limite infinie:

Soit A un entier naturel.

Soient (U_n) et (V_n) deux suites telles que, pour tout $n \ge A$: $U_n \le V_n$.

• Si
$$\lim_{n \to +\infty} U_n = +\infty$$
, alors: $\lim_{n \to +\infty} V_n = +\infty$

• Si
$$\lim_{n \to +\infty} V_n = -\infty$$
, alors: $\lim_{n \to +\infty} U_n = -\infty$.

2. Limite finie = Théorème des gendarmes :

Soit: • A un entier naturel

· l' un réel.

Soient (U_n) , (V_n) et (W_n) trois suites telles que, pour tout $n \ge A$:

$$U_n \leq V_n \leq W_n$$
.

Si
$$\lim_{n \to +\infty} U_n = f$$
 et $\lim_{n \to +\infty} W_n = f$, alors: $\lim_{n \to +\infty} V_n = f$.

G. Limites somme, produit, quotient:

1. Somme de 2 limites:

Si lim U _n =	P	P	P	+∞	+∞	-∞
et lim $V_n =$	P'	+∞	-∞	+∞	-∞	-∞
alors $\lim (U_n + V_n) =$	P+P'	+∞	-∞	+∞	FI	-∞

2. Produit de 2 limites:

Si lim U _n =	P	f > 0	f > 0	P < 0	f < 0	+∞	+∞	-∞	0
et lim $V_n =$	የ'	+∞	-00	+∞	-00	+∞	- ∞	-∞	+∞ ou -∞
alors lim $(U_n \times V_n) =$	PxP'	+∞	-∞	-∞	+∞	+∞	-∞	+∞	FI

3. Quotient de 2 limites:

a. Cas où lim $V_n \neq 0$:

Si lim U _n =	P	P	+∞	+∞	-∞	-∞	+∞ ou -∞
et lim $V_n =$	የ'	+∞ ou -∞	f'>0	f'<0	f'>0	f'<0	+∞ ou -∞
alors $\lim \left(\frac{\mathbf{U_n}}{\mathbf{V_n}}\right) =$	<u>የ</u>	0	+∞	-8	-8	+8	FI

b. Cas où lim $V_n = 0$:

Si lim U _n =	$l > 0$ ou $+\infty$	<i>P</i> < 0 ou -∞	$l > 0$ ou $+\infty$	<i>P</i> < 0 ou -∞	0
et lim $V_n =$	0+	0+	0-	0-	0
$\mathbf{alors \ lim} \left(\frac{\mathbf{U_n}}{\mathbf{V_n}} \right) =$	+∞	-∞	-∞	+∞	FI

H. 4 formes indéterminées (FI):

- $\bullet + \infty \infty$
- **0** x ∞
- ∞ / ∞
- 0 / 0.