www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

2023

Questionnaire à Choix Multiple

RÉPONSES

1. Une primitive F de f est définie par ...

Une primitive F de f sur IR est: $F(x) = 1 + xe^x$.

En effet, pour tout $x \in \mathbb{R}$: $F'(x) = I \times e^x + xe^x$

$$=f(x)$$

2. Les droites (d_1) et (d_2) sont ...

Les représentations paramétriques des droites (d,) et (d,) sont:

$$\begin{cases} x = 2 + r \\ y = l + r , r \in \mathbb{R} \end{cases} \qquad (d_2) \begin{cases} x = l - s \\ y = -l + s , s \in \mathbb{R}. \\ z = 2 - s \end{cases}$$

Pour répondre à la question, nous allons résoudre le système:

$$\begin{cases} 2+r=1-s & (1) \\ 1+r=-1+s & (2) \\ -r=2-s & (3) \end{cases}$$

$$\begin{cases} s = \frac{1}{2} \\ 1 + r = -1 + s? & \text{OUI } car - \frac{1}{2} = -\frac{1}{2} \\ r = -\frac{3}{2} \end{cases}$$

D'où, les droites (d_1) et (d_2) ont le point $\mathbf I$ comme point d'intersection avec:

$$\begin{cases} x_{I} = 2 + \left(-\frac{3}{2}\right) = \frac{1}{2} \\ y_{I} = 1 + \left(-\frac{3}{2}\right) = -\frac{1}{2} \\ z_{I} = -\left(-\frac{3}{2}\right) = \frac{3}{2} \end{cases}$$
 ou
$$\begin{cases} x_{I} = 1 - \frac{1}{2} = \frac{1}{2} \\ y_{I} = -1 + \frac{1}{2} = -\frac{1}{2} \\ z_{I} = 2 - \frac{1}{2} = \frac{3}{2} \end{cases}$$
 (avec s)

Au total, les droites (d_1) et (d_2) sont sécantes en $I\left(\frac{1}{2}; -\frac{1}{2}; \frac{3}{2}\right)$.

3. La droite Δ est ...

(P) a pour équation cartésienne: 2x-y+z-l=0. (\overrightarrow{n} (2;-1;1))

Une représentation paramétrique de la droite (Δ) est: $\begin{cases} x = 2 + u \\ y = 4 + u \\ z = 1 - u \end{cases}$

Un vecteur directeur de la droite (Δ) est donc: \vec{u} (1;1;-1).

Les vecteurs \overrightarrow{n} et \overrightarrow{u} sont orthogonaux car:

$$\vec{n} \cdot \vec{u} = (2 \times 1) + ((-1) \times 1) + (1 \times (-1)) = 0.$$

Ainsi, le plan (P) et la droite (Δ) sont parallèles.

Notons que: le point $A(2; 4; 1) \in (\Delta)$

et: $A \in (P)$ car $2 \times 2 - 4 + 1 - 1 = 0$.

Comme le plan (P) et la droite (D) sont parallèles et qu'ils ont en commun le point A: la droite (Δ) est inclus dans le plan (P).

4. Les plans (P₁) et (P₂) sont ...

Étape 1: (P_1) et (P_2) sont-ils sécants?

Pour répondre à cette question, nous allons résoudre le système:

$$\begin{cases} x-2y+z+l=0 & (1) \\ 2x+y+z-6=0 & (2) \end{cases}$$

$$\begin{cases} x - 2y + z + l = 0 \\ 2x + y + z - 6 = 0 \end{cases} \iff \begin{cases} x - 2y + z + l = 0 \\ x + 3y = 7 \end{cases} \tag{2} - (1)$$

$$\begin{cases} (7-3y)-2(y)+z+l=0 \\ x=7-3y \end{cases}$$

$$\begin{cases} x = 7 - 3t \\ y = t \\ z = -8 + 5t \end{cases}$$

Comme le système admet une solution, les plans (P_1) et (P_2) sont sécants.

Étape 2: (P_1) et (P_2) sont-ils perpendiculaires ?

Un vecteur normal au plan (P_i) est: \overrightarrow{n} , (I;-2;I).

Un vecteur normal au plan (P_2) est: n_2 (2; 1; 1).

Les vecteurs normaux \overrightarrow{n}_1 et \overrightarrow{n}_2 ne sont pas orthogonaux car:

$$(1 \times 2) + ((-2) \times 1) + (1 \times 1) = 1 \neq 0$$

Donc les plan (P_1) et (P_2) sont non perpendiculaires.

Au total, les plans (P_1) et (P_2) sont: sécants et non perpendiculaires.

5. La mesure α de l'angle FEG vérifie ...

Pour répondre à cette question, nous allons déterminer l'angle FEG noté α .

freemaths.fr · Mathématiques

BAC · Géométrie dans l'espace

L'angle
$$\alpha$$
 est tel que: $\cos(\alpha) = \frac{\overrightarrow{EF}. \overrightarrow{EG}}{EF. EG}$ (cours)

$$\iff \cos(\alpha) = \frac{\binom{1}{2} \cdot \binom{-3}{0}}{\sqrt{9} \cdot \sqrt{25}}$$

$$\iff \cos(\alpha) = \frac{5}{3.5} = \frac{1}{3}$$

cad $\alpha \approx 71^\circ$.

Ainsi la mesure α de l'angle \widehat{FEG} est égale à: 71°.