www.freemaths.fr

Spé Maths Terminale

Intégrale, Synthèse

CORRIGÉ DE L'EXERCICE

INTÉGRALE, SYNTHÈSE

33

CORRECTION

Partie A: Cas général

- 1. Déterminons les variations de la vitesse de la goutte d'eau:
 - · Calculons V ':

Ici: • V (t) = 9,81
$$\frac{m}{k}$$
 (1 - $e^{-\frac{k}{m}t}$)

•
$$D_v = [0; +\infty[$$
.

V est dérivable sur [$0; +\infty$ [.

Ainsi, nous pouvons calculer V' pour tout $t \in [0; +\infty[$.

Pour tout
$$t \in [0; +\infty[: V'(t) = 9, 81 \frac{m}{k} (\frac{k}{m} e^{-\frac{k}{m}t})$$

=> $V'(t) = 9, 81 \times e^{-\frac{k}{m}t}$.

Au total, pour tout $t \in [0; +\infty[: V'(t) = 9, 81 \times e^{-\frac{k}{m}t} > 0.$

• Étudions le sens de variation de V sur [0; +∞ [:

Nous avons: • V est strictement croissante sur $[0; +\infty[$.

$$(car sur [0; +\infty [, V'(t) > 0))$$

2. La goutte ralentit-elle au cours de sa chute ?

La goutte ne ralentit pas au cours de sa chute car V est strictement croissante sur $[0; +\infty [$, ce qui signifie que la vitesse instantanée verticale augmente au cours de la chute de la goutte.

3. Montrons que
$$\lim_{t\to +\infty} V(t) = 9, 81 \frac{m}{k}$$
:

Il s'agit ici de calculer:
$$\lim_{t \to +\infty} V(t) = \lim_{t \to +\infty} \left(9, 81 \frac{m}{k} - \frac{9, 81 m}{e^{\frac{k}{m}t}}\right)$$

Or, d'après le cours: •
$$\lim_{t \to +\infty} \frac{9,81 \, \text{m}}{e^{\frac{k}{m}t}} = 0$$
 (Théorème des croissances comparées).

Ainsi:
$$\lim_{t \to +\infty} V(t) = 9,81 \frac{m}{k}$$

Au total, nous avons bien:
$$\lim_{t \to +\infty} V(t) = 9,81 \frac{m}{k}$$
.

4. L'affirmation est-elle correcte?

Soient: • V_{max} , la vitesse limite de la goutte, avec: $V_{max} = 9$, 81 $\frac{m}{k}$,

•
$$V_G$$
, la vitesse de la goutte quand $t = \frac{5 \text{ m}}{k}$, avec: $V_G = 9$, $81 \frac{\text{m}}{k}$ (1 - e^{-5}).

Nous avons:
$$V_G = 9, 81 \frac{m}{k} \times (0, 9932)$$

$$= V_{max} \times (0,9932)$$

$$=> V_G = 99,32\% \times V_{max} > 99\% \times V_{max}$$

Au total: oui, la vitesse de la goutte dépasse 99% de sa vitesse limite.

Partie B: Cas particulier

1. Déterminons depuis combien de temps la goutte s'est détachée de son nuage:

Il s'agit ici de résoudre l'équation: $V(t) = 15 \text{ m} \cdot \text{s}^{-1}$.

$$V(t) = 15 \iff 9,81 \times \left(\frac{6}{3,9}\right) \times \left(1 - e^{-\left(\frac{3,9}{6}\right) \times t}\right) = 15$$

$$\iff 15,09 \times e^{-0,65 \times t} = 0,09$$

$$\iff -0,65 \times t \approx \ln(0,006)$$

$$\implies t \approx 7,87 \text{ secondes}.$$

Au total, le temps écoulé depuis que la goutte s'est détachée de son nuage est d'environ: 7,87 secondes ou 7,8 secondes (au dixième de seconde).

2. Déduisons-en la vitesse moyenne ce cette goutte:

Soit "m", la vitesse moyenne de V sur [0;7,87].

m est telle que:
$$m = \frac{1}{7,87 - 0} \int_{0}^{7,87} V(t) dt$$
.

Soit:
$$I = \int_{0}^{7,87} V(t) dt$$
.

V est continue sur [0; 7, 87], elle admet donc des primitives sur [0; 7, 87] et par conséquent: I existe.

$$I = \int_0^{7,87} 15,09 (1 - e^{-0.65 \times t}) dt$$

$$= 15,09 \left[t + \frac{1}{0.65} e^{-0.65 \times t} \right]_0^{7,87}$$

$$\Rightarrow I \approx 95,227.$$

D'où la vitesse moyenne de V sur [0;7,87] est:

$$m = \frac{1}{7,87-0} \times I \implies m \approx 12, 1 \text{ m} \cdot \text{s}^{-1}$$

Au total, la vitesse moyenne de cette goutte est d'environ: 12, 1 m.s⁻¹.