### www.freemaths.fr

# Spé Maths Terminale

Intégrale, Synthèse



**CORRIGÉ DE L'EXERCICE** 

### INTÉGRALE, SYNTHÈSE

23

### CORRECTION

### Partie A:

1. Encadrons chacune des solutions de l'équation f(x) = 0 sur l'intervalle [0; 7]:

L'équation f(x) = 0 admet deux solutions sur l'intervalle [0;7].

Soient  $x_1$  et  $x_2$  ces deux solutions.

Les deux encadrements (par 2 entiers consécutifs) des solutions  $x_1$  et  $x_2$  sont respectivement: [0; 1] et [2; 3].

2. Donnons le maximum de f sur l'intervalle [0;7] en précisant la valeur en laquelle il est atteint:

La fonction f atteint son maximum quand: x = 1.

Quand x = 1:  $f(1) \approx 14, 8$ .

Au total: f est maximum quand x = 1 et en ce point  $f_{max} \approx 14,8$ .

3. Déterminons à quel intervalle appartient l'intégrale:

Ici: 
$$I = \int_{1}^{3} f(x) dx$$
.

En unités d'aire et à l'unité près, l'aire  $\mathcal{A}=1$  du domaine compris entre la courbe ( $^6$ ), l'axe des abscisses et les droites d'équation x=1 et x=3, est telle que:  $18 < \mathcal{A} < 26$  (plus de 23 carreaux et moins de 26 carreaux, en comptant).

Au total, nous retiendrons l'intervalle: [18;26].

### Partie B:

1. Déterminons f ' pour tout réel x de l'intervalle [0;7]:

*Ici*: • 
$$f(x) = 2x e^{-x+3}$$
 (u x v)

- Df = [0; 7]
- f est définie et dérivable sur l'intervalle [0;7].

Comme f est dérivable sur [0;7], nous pouvons calculer f':

Pour tout 
$$x \in [0;7]$$
:  $f'(x) = 2 \times e^{-x+3} + 2x \times (-e^{-x+3})$  (u' x v + u x v')  
=>  $f'(x) = e^{-x+3} \times (-2x+2)$ .

Au total, pour tout  $x \in [0; 7]$ :  $f'(x) = (-2x + 2) \times e^{-x+3}$ .

2. a. Étudions le signe de f ' sur [0;7] et dressons le tableau de variation de f:

Nous allons distinguer 3 cas pour tout  $x \in [0, 7]$ :

• 
$$I^{er}$$
 cas:  $f'(x) = 0$ .

$$f'(x) = 0$$
 ssi  $(-2x + 2) \times e^{-x+3} = 0$   
 $\iff -2x + 2 = 0^*$ , cad:  $x = 1$ .

•  $2^{\text{ème}}$  cas: f'(x) < 0.

$$f'(x) < 0$$
 ssi  $(-2x + 2) \times e^{-x+3} < 0$   
 $<=> -2x + 2 < 0^*$ , cad:  $x > 1$  ou  $x \in [1,7]$ .

• 
$$3^{\text{ème}}$$
 cas:  $f'(x) > 0$ .

$$f'(x) > 0$$
 ssi  $(-2x + 2) \times e^{-x+3} > 0$   
 $<=> -2x + 2 > 0**, cad:  $x < 1$  ou  $x \in [0; 1[...]]$$ 

(\*: car pour tout  $x \in [0; 7], e^{-x+3} > 0$ )

Au total: • f est croissante sur [0; 1],

 $(car sur [0; 1], f'(x) \ge 0)$ 

• f est décroissante sur [1;7].

(car sur [1;7],  $f'(x) \leq 0$ )

Nous pouvons donc dresser le tableau de variation suivant:

| X  | 0   |   | 1             |   | 7   |
|----|-----|---|---------------|---|-----|
| f' |     | + | 0             | - |     |
| f  | a — |   | , ₹b <u> </u> |   | · c |

Avec: 
$$a = f(0) \implies a = 0$$
,

• 
$$b = f(1) \implies b = 2e^2 \ (\approx 14,78),$$

• 
$$c = f(7) \implies c = 14e^{-4} (\approx 0, 26).$$

### 2. b. Calculons le maximum de f sur l'intervalle [0;7]:

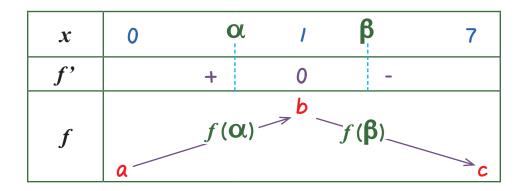
Le maximum de f sur [0;7] est atteint quand f'(x) = 0.

Or: f'(x) = 0 quand x = 1.

Ainsi: le point A  $(1; 2e^2)$  est le maximum de f sur [0; 7].

## 3. a. Justifions que l'équation f(x) = 10 admet deux solutions O(x) = 10 intervalle [0, 7]:

Pour cela, nous allons dresser un nouveau tableau de variation:



Avec: a = 0,

- $b \approx 14,78,$
- $c \approx 0, 26$
- $f(Ol) = f(\beta) = 10$ .

Le nouveau tableau de variation nous montre qu'il existe bien deux solutions  $\alpha$  et  $\beta$  telles que:  $f(\alpha) = f(\beta) = 10$ .

Au total  $\alpha$  et  $\beta$  existent bien avec:  $\alpha \in [0; 1]$  et  $\beta \in [1; 7]$ .

### 3. b. Donnons une valeur approchée de $\beta$ sachant que $\alpha \approx 0,36$ à $10^{-2}$ près:

Par tâtonnement, nous trouvons:  $\beta \approx 2$ , 16 à 10<sup>-2</sup> près.

Au total, à  $10^{-2}$  près: Ot  $\approx 0,36 \in [0;1]$  et  $\beta \approx 2,16 \in [1;7]$ .

### 4. a. Justifions que F est une primitive de f sur [0;7]:

Sur l'intervalle [0;7], F est une primitive de f ssi: F'(x) = f(x).

Ici: 
$$F(x) = (-2x - 2)e^{-x+3}$$
 (u x v).

D'où: 
$$F'(x) = -2 \times e^{-x+3} + (-2x-2) \times (-e^{-x+3})$$
 (u' x v + u x v')  
=>  $F'(x) = 2x \times e^{-x+3}$ .

Au total: F est bien une primitive de f car F'(x) = f(x).

#### 4. b. Calculons l'aire demandée:

Ici, il s'agit de calculer:  $\mathcal{A} = \int_{1}^{3} f(x) dx$ .

Nous avons:  $\mathcal{A} = [F(x)]_{i}^{3}$ 

$$\Rightarrow$$
  $\mathcal{A} = -8 + 4e^2 u a$  ou  $\mathcal{A} \approx 21,55 u a$ 

Au total, la valeur exacte de l'aire demandée est:  $\mathcal{A} = -8 + 4 e^2 u$  a

### 5. a. Calculons la valeur mayenne du bénéfice:

Soit " m ", la valeur moyenne de f sur [ 1;3].

m est telle que:  $m = \frac{1}{3-1} \int_{1}^{3} f(x) dx$ .

Or:  $\int_{1}^{3} f(x) dx = \mathcal{A}.$ 

D'où la valeur moyenne du bénéfice est:  $\frac{1}{3-1} \times \mathcal{A} \times 1000 \in$ .

Au total, la valeur moyenne du bénéfice, à l'euro près est:  $m = 10778 \in$ .

### 5. b. Déterminons le nombre d'objets que l'entreprise devra vendre:

Pour atteindre l'objectif fixé, le nombre d'objets que doit vendre l'entreprise devra être compris entre  $\alpha$  et  $\beta$ .

Ainsi, le nombre d'objets doit être compris entre: 36 et 216.