www.freemaths.fr

Spé Maths Terminale

Dérivées avec « exponentielle »

A. Dérivées à connaître:

La fonction exponentielle est définie et dérivable sur \mathbb{R} . Pour tout $x \in \mathbb{R}$:

- $\bullet (e^x)' = e^x.$
- $\bullet [e^{(ax+b)}]' = a \times e^{(ax+b)}.$
- $\bullet [e^{f(x)}]'=f'(x) \times e^{f(x)}.$

B. Étude de la fonction exponentielle:

Comme la fonction exponentielle est dérivable sur \mathbb{R} et $(e^x)' = e^x > 0$: cette fonction est strictement croissante sur \mathbb{R} .

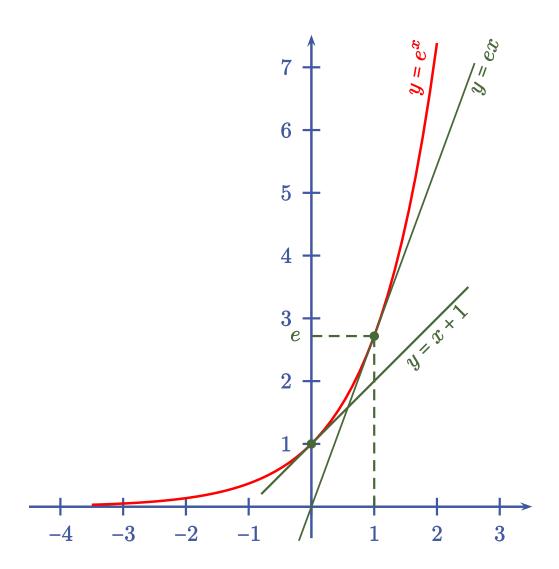
Le tableau de variations de la fonction exponentielle est donc:

x		0	1	+∞
(e ^x)'	+			
e ^x		1	• e	———

C. Conséquences:

- $\bullet e^{a} = e^{b} \iff a = b$
- $\bullet e^a > e^b \iff a > b$
- $\bullet e^{a} < e^{b} \iff a < b.$

D. Graphique de la fonction exponentielle:



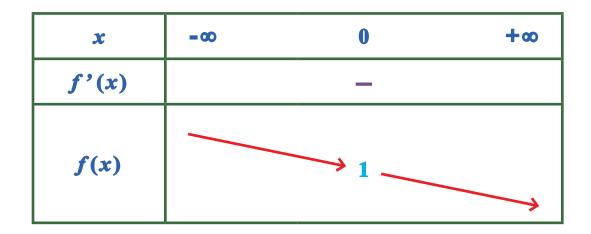
E. Les fonctions $f(x) = e^{-kx}$ et $g(x) = e^{kx}$ avec k > 0:

1.
$$f(x) = e^{-kx}, k > 0$$
:

La fonction f est définie et dérivable sur IR, et pour tout $x \in IR$:

$$f'(x) = -k e^{-kx} < 0.$$

Cette fonction est donc strictement décroissante sur \mathbb{R} et nous avons le tableau de variations suivant:



2.
$$g(x) = e^{kx}, k > 0$$
:

La fonction g est définie et dérivable sur \mathbb{R} , et pour tout $x \in \mathbb{R}$:

$$g'(x) = k e^{kx} > 0.$$

Cette fonction est donc strictement croissante sur \mathbb{R} et nous avons le tableau de variations suivant:

x	-∞	0	+∞
g'(x)		+	
g (x)		1	—————————————————————————————————————