www.freemaths.fr

Spé Maths Terminale

Corollaire du TVI

CORRIGÉ DE L'EXERCICE

THÉORÈME DES VALEURS INTERMÉDIAIRES

CORRECTION

I. Calculons f'(x) sur [-4; 10]:

Ici:
$$f(x) = (x + 4) e^{-0.5x}$$
, pour tout $x \in [-4; 10]$.

D'après l'énoncé, f est dérivable sur [-4; 10].

Dans ces conditions, nous pouvons calculer f' pour tout $x \in [-4; 10]$:

$$f'(x) = (1) \times (e^{-0.5x}) + (x + 4) \times (-0.5e^{-0.5x})$$
$$= (-0.5x - 1) e^{-0.5x}.$$

Ainsi, pour tout $x \in [-4; 10]$: $f'(x) = (-0, 5x - 1) e^{-0, 5x}$.

- 2. Étudions le sens de variation de f et dressons le tableau de variation:
 - a. Sens de variation de f:

Nous allons distinguer 2 cas pour tout $x \in [-4; 10]$:

• 1er cas:
$$f'(x) \leq 0$$
.

$$f'(x) \le 0$$
 ssi $(-0, 5x - 1)e^{-0, 5x} \le 0$ cad ssi: $x \ge -2$ ($e^{-0, 5x} > 0$).

• 2^e cas: $f'(x) \ge 0$.

$$f'(x) \ge 0$$
 ssi $(-0, 5x - 1)e^{-0, 5x} \ge 0$ cad ssi: $x \le -2$ ($e^{-0, 5x} > 0$).

Ainsi: • f est croissante sur [-4, -2],

• f est décroissante sur [-2; 10].

b. Tableau de variation de f:

Nous avons le tableau de variation suivant:

x	- 4		- 2	10
f'		+	0	-
f	a_		77 b \	→ c

Avec:
$$a = f(-4) \implies a = 0$$
,
 $b = f(-2) \implies b = 2e$,
 $c = f(10) \implies c = 14e^{-5}$.

3. Montrons que l'équation f(x) = 1,5 admet une unique solution α sur [1,6]:

Précisons que: f est strictement décroissante sur [1;6].

Nous allons appliquer le corollaire du théorème des valeurs intermédiaires pour répondre à cette question.

D'après le corollaire du TVI: soit f une fonction continue et strictement monotone sur I = [a; b] ou I =]a; b[

a et b désignent deux nombres réels de I avec: a < b.

Pour tout réel k compris entre f (a) et f (b), l'équation f (x) = k admet une unique solution dans I.

- Ici: f est continue sur [-4; 10], donc sur [1; 6].
 - " k = 1, 5 " est compris entre: $f(6) = 10e^{-3}$

et:
$$f(1) = 5e^{-0.5}$$
.

• f est strictement décroissante sur [1;6].

Ainsi, d'après le corollaire du TVI, l'équation f(x) = 1,5 admet bien une unique solution α appartenant à [1;6].