www.freemaths.fr

Spé Maths Terminale

Convexité & Concavité

CORRIGÉ DE L'EXERCICE

POINT D'INFLEXION

6

CORRECTION

I. Calculons f'(x) et f''(x) sur IR:

Ici:
$$f(x) = 5x^2 e^x$$
, pour tout $x \in \mathbb{R}$.

D'après l'énoncé f est deux fois dérivables sur IR.

Dans ces conditions, nous pouvons calculer f 'et f '' pour tout $x \in \mathbb{R}$:

•
$$f'(x) = (10x) \times (e^x) + (5x^2) \times (e^x)$$

= $(5x^2 + 10x) e^x$.

•
$$f''(x) = (10x + 10) \times (e^x) + (5x^2 + 10x) \times (e^x)$$

= $(5x^2 + 20x + 10) e^x$.

Ainsi, pour tout $x \in IR$:

$$f'(x) = (5x^2 + 10x)e^x$$
 et $f''(x) = (5x^2 + 20x + 10)e^x$.

2. La courbe représentative de f admet-elle un point d'inflexion ?

Soient f une fonction définie et deux fois dérivables sur un intervalle $\mathbf I$ et $\mathbf C$ sa courbe représentative.

Soit a un réel appartenant à I.

Si f" s'annule et change de signe en a, alors c admet un point d'inflexion au point d'abscisse: x = a.

Ici, pour tout $x \in \mathbb{R}$: $f''(x) = 5e^x(x^2 + 4x + 2)$.

Soit l'équation: $x^2 + 4x + 2 = 0$.

 $\Delta = (2\sqrt{2})^2 > 0.$

D'où deux solutions: $x'=-2-\sqrt{2}$ et $x''=-2+\sqrt{2}$.

Nous allons donc distinguer 2 cas pour tout $x \in \mathbb{R}$, sachant que: $5e^x > 0$.

• l^{er} cas: $f''(x) \ge 0$.

 $f''(x) \ge 0$ ssi $x^2 + 4x + 2 \ge 0$

cad ssi: $x \in]-\infty; -2 - \sqrt{2}] \cup [-2 + \sqrt{2}; +\infty[$

• 2^e cas: $f''(x) \leq 0$.

 $f''(x) \le 0$ ssi $x^2 + 4x + 2 \le 0$

cad ssi: $x \in [-2 - \sqrt{2}; -2 + \sqrt{2}]$

Dans ces conditions, f "s'annule en changeant de signe en deux points

d'abscisses: $\cdot x = -2 - \sqrt{2}$ et $\cdot x = -2 + \sqrt{2}$.

freemaths.fr · Mathématiques

Ainsi, la courbe cadmet deux points d'inflexion ayant pour abscisses respectifs:

$$x = -2 - \sqrt{2}$$
 et $x = -2 + \sqrt{2}$.