www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

POLYNÉSIE 2024

$$f(x) = x - \ln\left(\frac{x}{4}\right)$$

CORRECTION

1. a. Donnons les valeurs arrondies au centième de U_1 et U_2 :

Ici:
$$U_{n+1} = U_n - \ln\left(\frac{U_n}{4}\right)$$
, pour tout $n \in \mathbb{N}$

$$U_0 = 8.$$

D'où:
$$\mathbf{U}_{1} = \mathbf{U}_{0} - \ln\left(\frac{\mathbf{U}_{0}}{4}\right)$$

$$= 8 - \ln\left(\frac{8}{4}\right)$$

$$= 8 - \ln\left(2\right)$$

$$\approx 7,31$$

•
$$U_2 = U_1 - \ln\left(\frac{U_1}{4}\right)$$

= $(8 - \ln(2)) - \ln\left[\frac{(8 - \ln(2))}{4}\right]$
 $\approx 6,70.$

Ainsi: $U_1 \approx 7,31$ et $U_2 \approx 6,70$.

1. b. Que représente ce résultat ?

L'exécution de *mystere (10)* renvoie: 58.44045206721732.

mystere (10) donne la somme des premiers termes de la suite (U_n) de U_0 à U_0 cad $U_0 + U_1 + U_2 + U_3 + U_4 + U_5 + U_6 + U_7 + U_8 + U_9$.

I. c. Modifions la fonction afin qu'elle renvoie la moyenne des k premiers termes:

La fonction mystere modifiée, afin qu'elle renvoie la moyenne des k premiers termes de la suite (U_n) est:

def mystere(k):

$$u = 8$$

 $S = 0$
for i in range(k):
 $S = S + u$
 $u = u - log(u/4)$
return S/k

2. a. Étudions les variations de f sur] $0; +\infty$ [:

Ici:
$$f(x) = x - \ln\left(\frac{x}{4}\right)$$
 (U + In (V))
$$Df = \int_{0}^{\infty} 0 dx + \infty dx$$

Étape 1: Calcul de f'

La fonction f est dérivable sur] $0; +\infty$ [d'après l'énoncé.

Ainsi, nous pouvons calculer f pour tout $x \in]0; +\infty[$.

Pour tout
$$x \in]0; +\infty[$$
: $f'(x) = l - \frac{\frac{l}{4}}{\frac{x}{4}}$ $\left(u' + \frac{v'}{v} \right)$

$$= l - \frac{l}{x}$$

$$= \frac{x - l}{x}$$

D'où pour tout $x \in]0; +\infty[: f'(x) = \frac{x-1}{x}]$

Étape 2: Étude du signe de f' sur] $0; +\infty$ [

Comme x > 0, le signe de f dépend du signe de x - 1.

Distinguons deux cas pour tout $x \in]0; +\infty[$, sachant que x > 0:

•
$$f'(x) \le 0$$
 ssi $x - l \le 0$ cad $x \le l$ ou $x \in]0; l]$

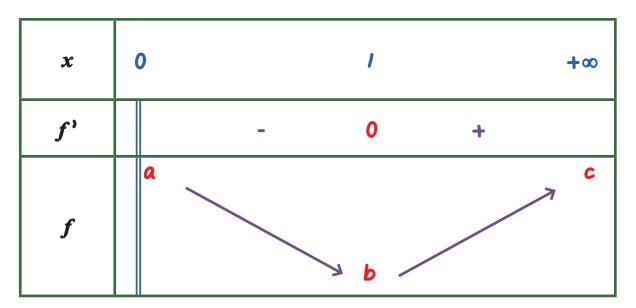
•
$$f'(x) \ge 0$$
 ssi $x - l \ge 0$ cad $x \ge l$ ou $x \in [l; +\infty[$.

Dans ces conditions: • la fonction f est décroissante sur] 0; /]

• la fonction f est croissante sur [I; $+\infty$ [.

2. b. Dressons le tableau de variations de f sur] $0; +\infty$ [:

Le tableau de variations de la fonction f sur] $0; +\infty$ [est:



Avec:
$$a = \lim_{x \to 0^+} f(x)$$

•
$$b = f(1) = 1 - \ln\left(\frac{1}{4}\right) = 1 + \ln(4)$$
 (minimum de f sur] 0; + ∞ [)

•
$$c = \lim_{x \to +\infty} f(x)$$

Le minimum de f sur] $0; +\infty$ [a pour coordonnées: (1; 1 + In (4)).

3. a. Montrons par récurrence que pour tout $n \in IN$, $l \leq U_{n+1} \leq U_n$:

$$lci: \quad \bullet \ \mathsf{U}_{n+1} = f \left(\ \mathsf{U}_{n} \right)$$

•
$$U_0 = 8$$

• n E IN.

Nous allons montrer par récurrence que:

" pour tout entier naturel n: $1 \le U_{n+1} \le U_n$ ".

Initialisation: $l \leq U_{l} \leq U_{0}$?

freemaths.fr · Mathématiques

$$\begin{cases} U_0 = 8 & \text{d'après l'énoncé} \\ \text{et} \\ U_1 = U_0 - \ln\left(\frac{U_0}{4}\right) & \text{cad} \quad U_1 = 8 - \ln(2) \approx 7,3. \end{cases}$$

Nous avons donc bien: $I \leq U_1 \leq U_0$

Donc vrai au rang " 0 ".

Hérédité: Supposons que pour un certain entier naturel $n, l \leq U_{n+1} \leq U_n$ et montrons qu'alors $l \leq U_{n+2} \leq U_{n+1}$.

Supposons: $I \leq U_{n+1} \leq U_n$, pour un entier naturel n fixé.

(1)

Notons que: f est croissante sur $[1; +\infty)$

D'où: (1)
$$\implies 1 \le U_{n+1} \le U_n \implies f(1) \le f(U_{n+1}) \le f(U_n)$$

 $\implies 1 + \ln(4) \le U_{n+2} \le U_{n+1}$
 $\implies 1 \le U_{n+2} \le U_{n+1}$

Conclusion: Pour tout entier naturel n, $I \leq U_{n+1} \leq U_n$.

3. b. Déduisons-en que la suite (U_n) converge vers une limite réelle \P \P :

D'après la question précédente, pour tout entier naturel n:

$$I \le U_{n+1} \le U_n \iff \begin{cases} U_{n+1} \le U_n \\ U_n \ge I \end{cases} \iff \begin{cases} (U_n) \text{ est décroissante sur IN} \\ (U_n) \text{ est minorée par } m = I \end{cases}$$

freemaths.fr · Mathématiques

BAC • Fonctions, Synthèse

Or d'après le cours, toute suite décroissante et minorée est convergente.

Donc ici: la suite (U_n) est convergente et converge vers \P^n .

3. c. Résolvons f(x) = x:

Pour tout
$$x \in [1; +\infty[$$
: $f(x) = x \iff x - \ln\left(\frac{x}{4}\right) = x$

$$\iff -\ln\left(\frac{x}{4}\right) = 0$$

$$\iff \frac{x}{4} = e^0$$

cad
$$x = 4$$

L'équation f(x) = x admet donc une solution sur $[1; +\infty [: x = 4]]$

3. d. Déduisons-en la valeur de ¶ P ¶:

Comme la suite (U_n) est convergente, elle admet une limite $f \in [I; +\infty[$ telle que: f(f) = f.

$$f(\mathbf{r}) = \mathbf{r} \iff \mathbf{r} - \ln\left(\frac{\mathbf{r}}{4}\right) = \mathbf{r}$$

cad f = 4. (d'après question précédente)

Au total, la suite (U_n) converge vers f avec: $f = 4 \in [1; +\infty[$.