www.freemaths.fr

Maths Expertes Terminale

Nombres Complexes Équations Polynomiales

CORRIGÉ DE L'EXERCICE

CORRECTION

Résolvons dans C l'équation (1):

Soit l'équation:
$$\frac{1}{z^2} - \frac{4}{z} + 13 = 0$$
, avec $z \neq 0$.

$$\frac{1}{z^2} - \frac{4}{z} + 13 = 0 \iff 13z^2 - 4z + 1 = 0, \text{ avec } z \neq 0.$$

$$(az^2 + bz + c = 0)$$

Calculons: $\Delta = b^2 - 4ac$.

Ici: a = 13, b = -4 et c = 1.

D'où: $\Delta = -36$ ou encore $\Delta = (6i)^2$.

D'où deux solutions: • $z_1 = \frac{4-6i}{26} = \frac{2}{13} - i(\frac{3}{13})$,

•
$$z_2 = \frac{4+6i}{26} = \frac{2}{13} + i\left(\frac{3}{13}\right)$$