www.freemaths.fr

Maths Expertes Terminale

Graphes, Matrices, Suites

CORRIGÉ DE L'EXERCICE

3 NOUVEAUX PLATS

CORRECTION

Partie 1:

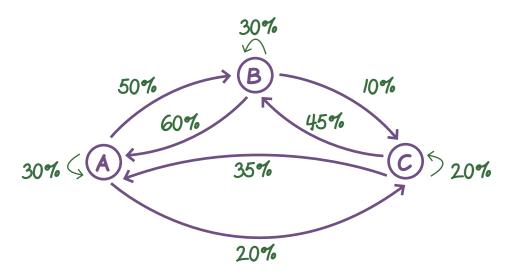
1. Représentons cette situation pour un graphe probabiliste:

Soient: • A, l'état: " Choisir le plat A ",

• B, l'état: " Choisir le plat B ",

• C, l'état: " Choisir le plat C ".

Le graphe probabiliste G est le suivant:



2. Donnons la matrice de transition M de ce graphe:

La matrice associée à ce graphe probabiliste ou matrice de transition M est:

$$M = \begin{pmatrix} 30\% & 50\% & 20\% \\ 60\% & 30\% & 10\% \\ 35\% & 45\% & 20\% \end{pmatrix}$$

3. Calculons P₂:

Ici, nous devons calculer: $P_2 = (a_2 \ b_2 \ c_2)$.

D'après le cours: $P_2 = P_1 \times M^{(2-1)}$ cad $P_2 = P_1 \times M'$.

Or: $P_1 = (35, 5\% 40, 5\% 24\%)$.

D'où:
$$P_2 = (35, 5\% \ 40, 5\% \ 24\%) \times \begin{pmatrix} 30\% \ 50\% \ 20\% \\ 60\% \ 30\% \ 10\% \\ 35\% \ 45\% \ 20\% \end{pmatrix}$$

= (0, 4335 0, 407 0, 1595).

Donc: $a_2 = 43,35\%$, $b_2 = 40,7\%$ et $c_2 = 15,95\%$.

Au total, le second jour: $P_2 = (43, 35\% 40, 7\% 15, 95\%)$.

Cela signifie que le second jour, parmi les clients:

- 43, 35% ont choisi le plat A
- 40,7% ont choisi le plat B
- 15,95% ont choisi le plat C.

4. Le restaurateur a-t-il raison?

Pour répondre à cette question, nous allons calculer:

 P_{12} et P_{13} et procéder à une comparaison.

- $P_{12} = P_{11} \times M$ ou: $P_{12} = P_{1} \times M^{1/2-1}$ cad: $P_{12} = P_{1} \times M^{1/1}$.
- $P_{13} = P_{12} \times M$.

A l'aide d'une machine à calculer, on trouve:

- $P_{12} \approx (43, 1\% \ 41\% \ 15, 9\%),$
- $P_{13} \approx (43, 1\% \ 41\% \ 15, 9\%).$

Au total, nous pouvons affirmer que: oui, le restaurateur a raison car les douzième et treizième jours, la proportion de clients qui choisiront le plat C sera la même et sera égale à environ 15,9%.

Partie 2:

I. a. Montrons qu'il existe un parcours qui emprunte toutes les rues une et une seule fois:

Cela revient à déterminer si le graphe admet une chaîne eulérienne.

D'après le cours:

Le graphe étant connexe, les deux propriétés suivantes sont équivalentes:

- Zéro ou deux sommets (et deux seulement) X et Y du graphe sont de degré impair.
- Le graphe admet une chaîne eulérienne d'extrémités X et Y.

Or ici: le graphe (d'ordre 8) est connexe car il existe une chaîne entre deux sommets quelconques de ce graphe.

Et, nous avons le tableau des sommets degrés suivant:

Sommets	Н,	H ₂	H ₃	H ₄	H₅	H ₆	H ₇	H ₈
Degrés	3	4	6	2	2	3	4	2

(degré d'un sommet = nombre d'arêtes dont le sommet est une extrémité)

Comme il y a 2 sommets et deux seulement H_i et H_g qui sont de degré impair, d'après le **théorème d'Euler**, le graphe admet une chaîne eulérienne.

Donc: oui, il existe bien un parcours qui emprunte toutes les rues une et une seule fois.

1. b. Un tel parcours peut-il partir de H, et y revenir ?

Un tel parcours peut partir de H, et y revenir ssi il existe un cycle eulérien pour ce graphe connexe.

D'après le cours: un graphe connexe contient un cycle eulérien ssi tous ses sommets sont de degré pair.

Or ici, tous les sommets ne sont pas de degré pair.

Par conséquent: ce graphe n'admet pas de cycle eulérien.

Ainsi: impossible pour le parcours de partir de H, et d'y revenir!

2. Déterminons le temps minimal pour aller de H_4 à H_8 :

Notons que: le livreur du restaurant se trouve en H_4 et désire se rendre le plus rapidement possible (minimisation du temps) en H_8 .

Après avoir recours à l'algorithme de **Dijkstra**, nous trouvons comme trajet que le livreur doit suivre pour aller de H_4 à H_8 , tout en minimisant le temps écoulé: le trajet $H_4 - H_5 - H_3 - H_7 - H_8$.

Et ce trajet durera: $15 \, \text{mn} + 7 \, \text{mn} + 4 \, \text{mn} + 9 \, \text{mn} = 35 \, \text{minutes}$.

En effet, l'algorithme de Dijkstra est le suivant:

From to	Н,	H ₂	H ₃	H₅	H ₆	H ₇	H ₈
H ₄	8H ₄	∞	œ	<i>1</i> 5 H ₄	8	8	∞
Н, (8)		<i>17</i> H,	24H,	15 H ₄	8	8	∞
H _s (<i>1</i> 5)		<i>17</i> H,	22 H₅		8	8	∞
H ₂ (17)			22 H ₅		34 H ₂	28 H ₂	œ
H ₃ (22)					27 H ₃	26 H ₃	50 H ₃
H ₇ (26)					27 H ₃		35 H ₇
H ₆ (27)							35 H ₇

Au total, le trajet que le livreur doit suivre pour aller de H_4 à H_8 , tout en minimisant le temps écoulé est:

 $H_4 - H_5 - H_3 - H_7 - H_8$, et ce trajet durera 35 minutes.