www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

CENTRES ÉTRANGERS 2

2023

PRÉSERVER LA NATURE

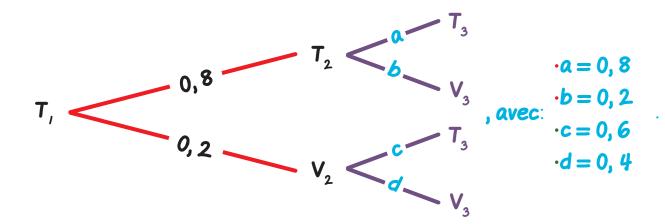
CORRECTION

1. Recopions et complétons l'arbre pondéré:

D'après l'énoncé, nous avons:

- $T_n = "$ il utilise les transports en commun le n-ième jour ".
- $V_n = "$ il utilise son vélo le n-ième jour ".
- $P(T_n) = P_n$
- P (V_n) = 1 P_n
- $P_{T_n}(T_{n+1}) = 0,8$
- $P_{T_n}(V_{n+1}) = 1 0, 8 = 0, 2.$
- $P_{V_n}(T_{n+1}) = 1 0, 4 = 0, 6$
- $P_{V_n}(V_{n+1}) = 0, 4.$
- $P(T_i) = P_i = I$.

D'où l'arbre de probabilités complété et le suivant:



2. Calculons P₃:

Compte tenu des données:
$$P_3 = P(T_3) = P(T_3 \cap T_2) + P(T_3 \cap V_2)$$

(probabilités totales)

$$= 0,8 \times 0,8 + 0,6 \times 0,2$$

$$= 0, 8 \times 0, 8 + 0, 6 \times 0, 2$$

= 0, 76.

Ainsi:
$$P_3 = 76\%$$
.

3. Calculons la probabilité que M. Durand ait pris les transports en commun la veille sachant qu'il utilise son vélo aujourd'hui:

Ici, il s'agit de calculer: $P_{V_3}(T_2)$.

$$P_{V_3}(T_2) = \frac{P(T_2 \cap V_3)}{P(V_3)}$$

$$= \frac{P_{T_2}(V_3) \times P(T_2)}{P(V_3)}$$

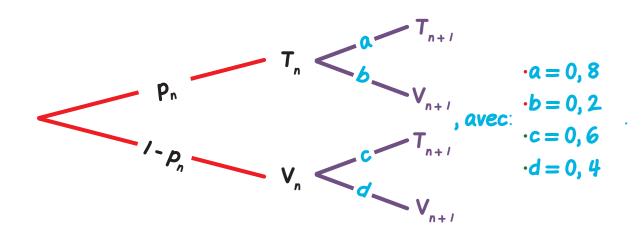
$$= \frac{0, 2 \times 0, 8}{1 - P_3}$$

$$= \frac{2}{3}$$

Ainsi, la probabilité que M. Durand ait pris les transports en commun la veille sachant qu'il utilise son vélo aujourd'hui est de: $\frac{2}{3}$.

4. Recopions et complétons l'arbre pondéré:

L'arbre pondéré complété est le suivant:



5. Montrons que pour tout entier naturel * n * non nul, $P_{n+1} = 0$, 2 $P_n + 0$, 6:

Ici, il s'agit de calculer:
$$P(T_{n+1}) = P_{n+1}$$

L'événement
$$T_{n+1} = (T_{n+1} \cap T_n) \cup (T_{n+1} \cap V_n)$$
.

D'après la formule des probabilités totales:

$$P(T_{n+1}) = P(T_{n+1} \cap T_n) + P(T_{n+1} \cap V_n)$$

$$= 0,8 \times P_n + 0,6 (1 - P_n)$$

$$= 0, 2 P_n + 0, 6$$

Ainsi, pour tout entier naturel " n " non nul, nous avons bien:

$$P_{n+1} = 0, 2 P_n + 0, 6$$

6. Montrons par récurrence que pour tout $n \in \mathbb{N}^*$, $P_n = 0$, 75 + 0, $25 \times (0, 2)^{n-1}$:

Nous allons montrer par récurrence que:

"Pour tout entier naturel non nul n: $P_n = 0$, 75 + 0, 25 x (0, 2)ⁿ⁻¹."

Initialisation:
$$P_1 = 0,75 + 0,25 \times (0,2)^{1-1}$$

= 0,75 + 0,25
= 1.

Or, d'après l'énoncé: $P_1 = I$.

Donc vrai au rang 11.

Hérédité: Supposons que pour un certain entier naturel non nul n, $P_n = 0,75 + 0,25 \times (0,2)^{n-1}$ et montrons qu'alors nous avons

$$P_{n+1} = 0,75 + 0,25 \times (0,2)^n$$

Supposons: $P_n = 0$, 75 + 0, 25 x $(0, 2)^{n-1}$, pour un entier naturel non nul n fixé.

$$(1) \implies 0, 2 P_n = 0, 2 \times 0, 75 + 0, 25 \times (0, 2)^{n-1} \times 0, 2$$

$$\implies 0, 2 P_n + 0, 6 = 0, 2 \times 0, 75 + 0, 6 + 0, 25 \times (0, 2)^n$$

$$\implies 0, 2 P_n + 0, 6 = 0, 75 + 0, 25 \times (0, 2)^n$$

$$\Rightarrow P_{n+1} = 0,75 + 0,25 \times (0,2)^n$$

Conclusion: Pour tout $n \in IN^*$, $P_n = 0$, 75 + 0, 25 x (0, 2)ⁿ⁻¹.

7. Déterminons la limite de la suite (P_n) et interprétons le résultat:

$$\lim_{n \to +\infty} P_n = \lim_{n \to +\infty} 0,75 + 0,25 \times (0,2)^{n-1}$$

$$= 0,75 \text{ car } \lim_{n \to +\infty} (0,2)^{n-1} = 0, \text{ car } 0,2 \in]0;1[.$$

Ainsi, nous avons:
$$\lim_{n \to +\infty} P_n = 0,75.$$

Cela signifie, qu'au bout d'un certain nombre de jours, M. Durand prendra les transports en commun 3 jours sur 4.