www.freemaths.fr

Maths Complémentaires Terminale

Intégrales par IPP

CORRIGÉ DE L'EXERCICE

DOUBLE INTÉGRATION PAR PARTIES

2

CORRECTION

Calculons I à l'aide d'une IPP:

$$lci: \quad \mathbf{I} = \int_0^{\pi} e^{-2x} \sin x \, dx.$$

Soit $f(x) = e^{-2x} \sin x$. f est continue sur [0; T]. Elle admet donc des primitives sur [0; T] et par conséquent I existe.

Ayons recours à une intégration par parties (IPP) pour le calcul de l'intégrale I.

Posons:
$$u(x) = e^{-2x}$$
, d'où $u'(x) = -2e^{-2x}$

•
$$v'(x) = \sin x$$
, $d'où v(x) = -\cos x$.

(u et v admettent des dérivées continues sur [0; TT])

Dans ces conditions:
$$I = [u(x) \times v(x)]_0^{\pi} - \int_0^{\pi} v(x) \times u'(x) dx$$

$$= [(e^{-2x}) \times (-\cos x)]_0^{\pi} - \int_0^{\pi} (-\cos x) \times (-2e^{-2x}) dx$$

$$= -[e^{-2x}\cos x]_0^{\pi} - 2\int_0^{\pi} e^{-2x}\cos x \, dx.$$

Procédons à une seconde intégration par parties pour le calcul de:

$$\mathbf{J} = \int_0^\pi e^{-2x} \cos x \, dx.$$

Soit $g(x) = e^{-2x} \cos x$. g est continue sur [0; T]. Elle admet donc des primitives sur [0; T] et par conséquent J existe.

Posons: $u(x) = e^{-2x}$, d'où $u'(x) = -2e^{-2x}$

•
$$v'(x) = \cos x$$
, $d'où v(x) = \sin x$.

Dans ces conditions: $\mathbf{J} = [(e^{-2x}) \times (\sin x)]_0^{\pi} - \int_0^{\pi} (\sin x) \times (-2e^{-2x}) dx$

$$= [e^{-2x} \sin x]_0^{\pi} + 2 \int_0^{\pi} e^{-2x} \sin x \, dx$$

$$= [e^{-2x} \sin x]_0^{\pi} + 2 \times I.$$

Par conséquent: $I = -[e^{-2x} \cos x]_0^{\pi} - 2([e^{-2x} \sin x]_0^{\pi} + 2 \times I)$

$$\iff$$
 5I = - [$e^{-2x} \cos x$]₀ ^{π} - 2 [$e^{-2x} \sin x$]₀ ^{π}

$$<=> 5I = I + e^{-2\pi}$$
.

cad:
$$I = \frac{1}{5} (1 + e^{-2\pi})$$
.

Au total, nous avons: $I = \frac{1}{5} (1 + e^{-2\pi})$.