www.freemaths.fr

Maths Complémentaires Terminale

Limites «d'une fonction f »

A. Limites infinie en $+\infty$ et en $-\infty$:

1. Notations:

- $\lim_{x \to +\infty} f(x) = +\infty$
- $\lim_{x \to +\infty} f(x) = -\infty$
- $\lim_{x \to -\infty} f(x) = +\infty$
- $\lim_{x \to -\infty} f(x) = -\infty$.

2. Limites admises à connaître:

- $\lim_{x \to +\infty} \sqrt{x} = +\infty$
- $\lim_{x \to +\infty} x^n = +\infty$ (n $\in \mathbb{N}^*$)
- $\lim_{x \to +\infty} e^x = +\infty$
- $\lim_{x\to+\infty} \ln(x) = +\infty$.

B. Limites finie en $+\infty$ et en $-\infty$:

1. Notations:

Soit ? un réel, on note:

$$\lim_{x \to +\infty} f(x) = f$$

$$\lim_{x\to-\infty}f(x)=\mathbf{f}.$$

2. Limites admises à connaître:

•
$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$
 (n $\in \mathbb{N}^*$)

•
$$\lim_{x\to-\infty}\frac{1}{x^n}=0$$
 (n $\in \mathbb{N}^*$)

•
$$\lim_{x\to-\infty} e^x = 0$$
.

3. Asymptote horizontale: 🛕

• Si $\lim_{x \to +\infty} f(x) = f$, la courbe représentative de f admet une asymptote

horizontale en $+\infty$: la droite d'équation y = f.

• Si $\lim_{x\to-\infty} f(x) = f$, la courbe représentative de f admet une asymptote

horizontale en $-\infty$: la droite d'équation y = f.

C. Limites en un réel "a":

1. Notations:

Soit "a" un réel, on note:

•
$$\lim_{x\to a} f(x) = +\infty$$

•
$$\lim_{x\to a} f(x) = -\infty$$

$$\begin{array}{cc}
\cdot & \lim_{x \to a} f(x) = f.
\end{array}$$

2. Limite "à droite" et limite "à gauche":

• Limite "à droite" quand x tend vers "a" se note:

$$\lim_{x \to a^{+}} f(x) \quad \text{ou} \quad \lim_{x \to a} f(x).$$

$$x \to a$$

$$x > a$$

• Limite "à gauche" quand x tend vers "a" se note:

$$\lim_{x \to a^{-}} f(x) \quad \text{ou} \quad \lim_{x \to a} f(x).$$

$$x \to a$$

$$x < a$$

3. Limites admises à connaître:

Pour tout $n \in \mathbb{N}^*$:

•
$$\lim_{x\to 0^+} \frac{1}{x^n} = +\infty$$

•
$$\lim_{x\to 0^-} \frac{1}{x^n} = \begin{cases} +\infty, & \text{si "n" pair} \\ -\infty, & \text{si "n" impair} \end{cases}$$

•
$$\lim_{x\to 0^+} \frac{1}{\sqrt{x}} = +\infty.$$

4. Asymptote verticale:

Si $\lim_{x\to a} f(x) = +\infty$ ou $-\infty$ (à gauche ou à droite), la courbe représentative

de f admet une asymptote verticale d'équation: x = a.

Exemple:

Soit
$$f(x) = \frac{2}{x-1}$$
 pour tout $x \in \mathbb{R} - \{/\}$.

D. Limites somme, produit, quotient:

1. Somme de 2 limites:

Si lim f=	P	P	P	+∞	+∞	-∞
et lim g =	የ'	+∞	-∞	+∞	-∞	-∞
alors $\lim (f+g) =$	የ+የ'	+∞	-∞	+∞	FI	-∞

2. Produit de 2 limites:

Si lim f=	P	f > 0	f > 0	P < 0	P < 0	+∞	+∞	-∞	0
et lim g =	የ'	+∞	-∞	+∞	-∞	+∞	-∞	-∞	+∞ ou -∞
alors $\lim (f x g) =$	PxP'	+∞	-∞	-∞	+∞	+∞	-∞	+∞	FI

3. Quotient de 2 limites:

a. Cas où lim $g(x) \neq 0$:

Si lim f=	P	P	+∞	+∞	-∞	-∞	+∞ ou -∞
et lim g =	የ'	+∞ ou -∞	f'>0	f'<0	f'>0	f'<0	+∞ ou -∞
alors $\lim \left(\frac{f}{g}\right) =$	<u>የ</u>	0	+∞	-8	-8	+∞	FI

b. Cas où lim g(x) = 0:

Si lim f=	$l > 0$ ou $+\infty$	<i>f</i> < 0 ou -∞	$l > 0$ ou $+\infty$	f < 0 ou -∞	0
et lim g =	0+	0+	0-	0-	0
alors $\lim \left(\frac{f}{g}\right) =$	+∞	-∞	-∞	+∞	FI

E. 4 formes indéterminées (FI):

- $\bullet + \infty \infty$
- 0 x ∞
- $\bullet \infty / \infty$
- 0 / 0.

F. Théorèmes à connaître:

1. Théorème 1:

Soient deux fonctions f et g telles que $f(x) \le g(x)$ sur $[A; +\infty [$:

• Si
$$\lim_{x \to +\infty} f(x) = +\infty$$
, alors $\lim_{x \to +\infty} g(x) = +\infty$

• Si
$$\lim_{x \to +\infty} g(x) = -\infty$$
, alors $\lim_{x \to +\infty} f(x) = -\infty$.

2. Théorème 2 des gendarmes :

Soient f un réel et trois fonctions f, g et h avec :

$$f(x) \leq g(x) \leq h(x) \text{ sur } [A; +\infty [.$$

Si
$$\lim_{x \to +\infty} f(x) = f$$
 et $\lim_{x \to +\infty} h(x) = f$, alors: $\lim_{x \to +\infty} g(x) = f$.

Ce théorème marche aussi quand x tend vers "- ∞ " ou vers un réel "a".