www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

CENTRES ÉTRANGERS 2

2023

$$f(x) = \frac{1}{(1 + e^{-3x})}$$

CORRECTION

PARTIE A

1. Déterminons l'équation réduite de la tangente T:

Ici:
$$f(x) = \frac{1}{(1 + e^{-3x})}$$
 $\left(\frac{U}{1 + e^{V}}\right)$

•
$$\mathfrak{D}f = IR$$

•
$$A = \left(0; \frac{1}{2}\right)$$

• B =
$$\left(I; \frac{5}{4}\right)$$
.

L'équation de la tangente T à f au point $A\left(0; \frac{1}{2}\right)$ s'écrit:

$$y = f'(x_{\perp}) \times (x - x_{\perp}) + f(x_{\perp})$$

$$\iff y = \left(\frac{y_B - y_A}{x_B - x_A}\right) \times (x - 0) + \frac{1}{2}$$

$$\iff y = \left(\frac{\frac{5}{4} - \frac{1}{2}}{1 - 0}\right) \times x + \frac{1}{2}$$

cad:
$$y = \frac{3}{4}x + \frac{1}{2}$$

L'équation réduite de la tangente T est donc: $y = \frac{3}{4}x + \frac{1}{2}$

2. Donnons les intervalles sur lesquels f semble convexe ou concave:

La fonction f semble: • convexe sur $]-\infty;0]$

• concave sur $[0; +\infty[$.

PARTIE B

1. Déterminons f 'sur IR:

La fonction $f(x) = \frac{1}{(1 + e^{-3x})}$ est dérivable sur IR, d'après l'énoncé.

Ainsi, nous pouvons calculer f pour tout $x \in \mathbb{R}$.

Pour tout
$$x \in \mathbb{R}$$
: $f'(x) = \frac{(0) \times (1 + e^{-3x}) - (1) \times (-3 e^{-3x})}{[1 + e^{-3x}]^2}$

$$\left(\frac{U' \times (I + e^{\vee}) - U \times (V' e^{\vee})}{V^2}\right)$$

$$=\frac{3e^{-3x}}{[1+e^{-3x}]^2}.$$

Ainsi, pour tout $x \in \mathbb{R}$: $f'(x) = \frac{3e^{-3x}}{[1+e^{-3x}]^2}$

2. Justifions que la fonction f est strictement croissante sur IR:

Pour tout
$$x \in \mathbb{R}$$
: $[1 + e^{-3x}]^2 > 0$ et $e^{-3x} > 0$.

Dans ces conditions:
$$\frac{3 e^{-3x}}{[1 + e^{-3x}]^2} > 0$$
, pour tout $x \in \mathbb{R}$.

Ainsi: f est strictement croissante sur IR.

3. a. Déterminons la limite en $+\infty$ de la fonction f:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{1 + \frac{1}{e^{3x}}}.$$

Or d'après le cours: •
$$\lim_{x \to +\infty} \frac{1}{e^{3x}} = 0$$
.

Dans ces conditions:
$$\lim_{x \to +\infty} f(x) = \frac{1}{1+0} = 1$$
.

3. b. Déterminons la limite en $-\infty$ de la fonction f :

$$\lim_{x \to -\infty} f(x) = \lim_{X \to +\infty} \frac{1}{1 + e^{X}}, \text{ avec: } X = -3x.$$

Or d'après le cours: •
$$\lim_{X \to +\infty} e^{x} = +\infty$$
.

Dans ces conditions:
$$\lim_{x \to -\infty} f(x) = \frac{1}{1 + (+\infty)} = 0.$$

4. Déterminons la valeur exacte de la solution α de l'équation f(x) = 0, 99:

$$f(x) = 0,99 \iff \frac{1}{1 + e^{-3x}} = 0,99$$

$$\iff$$
 0, 99 + 0, 99 $e^{-3x} = 1$

$$\ll e^{-3x} = 0,0101$$

$$\iff x = \frac{\ln(0,000)}{-3}$$

cad: $x \approx 1,53$.

La valeur de la solution α de l'équation f(x) = 0, 99 est environ égale à:

1,53.

PARTIE C

1. Déterminons une équation de la tangente T à la courbe e^t au point $A\left(0; \frac{1}{2}\right)$:

L'équation de la tangente T à f au point $A\left(0; \frac{1}{2}\right)$ s'écrit:

$$y = f'(x_A) \times (x - x_A) + f(x_A)$$

$$\iff y = f'(0) \times x + \frac{1}{2}$$

cad:
$$y = \left(\frac{3 \times e^0}{[1 + e^0]^2}\right) \times x + \frac{1}{2}$$

ou:
$$y = \frac{3}{4}x + \frac{1}{2}$$

Ainsi l'équation de la tangente T à ℓf au point A est: $y = \frac{3}{4}x + \frac{1}{2}$

2. Étudions le signe de f " sur IR:

$$|ci: f''(x)| = \frac{9 e^{-3x} (e^{-3x} - 1)}{[1 + e^{-3x}]^3} = \frac{3 (e^{-3x} - 1)}{(1 + e^{-3x})} \times f'(x)$$

$$\bullet \mathcal{D} f'' = IR.$$

Or, pour tout
$$x \in IR$$
: • $f'(x) > 0$
• $l + e^{-3x} > 0$

•
$$3 > 0$$
.

Donc le signe de f " dépend uniquement du signe de (e^{-3x} - I).

Distinguons deux cas:
$$e^{-3x} - 1 \ge 0$$
 ssi $-3x \ge 0$ cad $x \in]-\infty; 0],$
$$e^{-3x} - 1 \le 0$$
 ssi $-3x \le 0$ cad $x \in [0; +\infty[$.

Au total:
$$f''(x) \ge 0$$
 sur $]-\infty;0],$
 $f''(x) \le 0$ sur $[0;+\infty[$.

3. a. Indiquons sur quels intervalles f est convexe:

D'après le cours: •
$$f$$
 est concave sur \mathbf{I} ssi f " $(x) \le 0$ pour tout $x \in \mathbf{I}$ • f est convexe sur \mathbf{I} ssi f " $(x) \ge 0$ pour tout $x \in \mathbf{I}$.

Donc ici: •
$$f$$
 est convexe sur $]-\infty;0],$
• f est concave sur $[0;+\infty[$.

3. b. Que représente le point A pour la courbe C_f ?

En A, la fonction f "s'annule et change de signe: le point A est donc un point d'inflexion pour ef.

freemaths.fr · Mathématiques

4. Déduisons-en la position relative de la tangente T et de la courbe cf

Tantôt au-dessus (] $-\infty$; 0[), tantôt au-dessous (] 0; $+\infty$ [).