www.freemaths.fr

BACCALAURÉAT MATHÉMATIQUES

FRANCE MÉTROPOLITAINE 2023

$f(x) = x^2 - 8 \ln(x)$

CORRECTION

1. Déterminons $\lim_{x\to 0} f(x)$:

lci:
$$f(x) = x^2 - 8 \ln(x)$$
 (U - 8 ln (V))

•
$$\mathfrak{D}f=$$
] 0; + ∞ [.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 - 8 \ln(x).$$

Or d'après le cours: •
$$\lim_{x\to 0^+} x^2 = 0$$

•
$$\lim_{x \to 0^+} \ln(x) = -\infty$$
.

Dans ces conditions:
$$\lim_{x\to 0^+} f(x) = 0 - 8 \times (-\infty) = +\infty$$
.

2. Déduisons-en la limite de f(x) en $+\infty$:

En +\infty, la fonction f peut s'écrire:
$$f(x) = x^2 \times \left(1 - \frac{8 \ln(x)}{x^2}\right)$$
. $(x > 0)$

D'où:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 \left(I - \frac{8 \ln(x)}{x^2} \right)$$
.

Or d'après le cours: •
$$\lim_{x \to +\infty} x^2 = +\infty$$
• $\lim_{x \to +\infty} \frac{\ln(x)}{x^2} = 0$ (Croissances Comparées).

Dans ces conditions:
$$\lim_{x \to +\infty} f(x) = +\infty \times (1 - 0) = +\infty$$
.

3. Montrons que pour tout
$$x \in]0; +\infty [, f'(x) = \frac{2(x^2 - 4)}{x}]$$

La fonction $f(x) = x^2 - 8 \ln(x)$ est dérivable sur] $0; +\infty$ [comme somme de deux fonctions dérivables sur] $0; +\infty$ [.

Ainsi, nous pouvons calculer f pour tout $x \in]0; +\infty[$.

Pour tout
$$x \in]0; +\infty[: f'(x) = 2x - 8x(\frac{1}{x})]$$
 $(u' - 8x \frac{V'}{V})$

$$= 2x - \frac{8}{x}$$

$$= \frac{2x^2 - 8}{x}$$

$$= \frac{2(x^2 - 4)}{x}$$

Donc nous avons bien pour tout $x \in]0; +\infty[: f'(x) = \frac{2(x^2-4)}{x}]$.

4. a. Étudions le signe de f' sur] $0; +\infty$ [:

Préalablement, notons que: le signe de f dépend du signe de $(x^2 - 4)$ car pour tout $x \in]0; +\infty [, \frac{2}{r} > 0]$.

Distinguous deux cas pour tout $x \in]0; +\infty[$.

I'' cas:
$$f'(x) \le 0$$
.
 $f'(x) \le 0 \iff x^2 - 4 \le 0$
 $\iff x^2 \le 4$

$$\iff x \in [-2, 2] \text{ cad ici } x \in]0, 2].$$

$$2^e$$
 cas: $f'(x) \ge 0$.

$$f'(x) \ge 0 \iff x^2 - 4 \ge 0$$

 $\iff x^2 \ge 4$
 $\iff x \in]-\infty; -2] \cup [2; +\infty[cadici x \in [2; +\infty[...]$

Ainsi: • fest décroissante sur] 0; 2],

• f est croissante sur [2; $+\infty$ [.

4. b. Dressons le tableau de variations de la fonction f sur] $0; +\infty$ [:

Le tableau de variations de la fonction f sur] $0; +\infty$ [est:

x	0	2		+∞
f'	-	0	+	
f	a	>> b /		>C

Avec: $\cdot a = +\infty$

•
$$b = f(2) = 4 - 8 \ln(2)$$
 (minimum de $f = 0$; + ∞ [)
• $c = +\infty$.

5. Montrons que l'équation f(x) = 0 admet une unique solution α sur] 0; 2]:

Nous allons appliquer le **corollaire** du théorème des valeurs intermédiaires pour répondre à cette question.

D'après le corollaire du TVI: Soit f une fonction continue et strictement monotone sur I = [a; b] ou I =]a; b[(a < b). Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans I.

Ici: • f est continue sur] 0; + ∞ [, donc sur] 0; 2],

• " k = 0 " est compris entre: $f(2) = 4 - 8 \ln(2) < 0$

et:
$$\lim_{x \to 0^+} f(x) = +\infty > 0$$
,

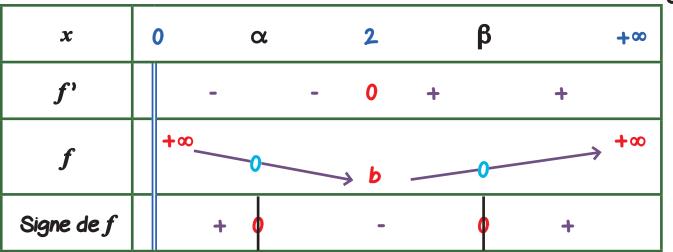
• f est strictement décroissante sur] 0; 2].

Ainsi, d'après le corollaire du TVI, l'équation f(x) = 0 (k = 0) admet bien une unique solution α appartenant à] 0; 2].

6. Déduisons-en le signe de f sur] $0; +\infty$ [:

D'après l'énoncé, sur [2; $+\infty$ [: f(x) = 0 admet une unique solution β .

Dans ces conditions, nous pouvons en déduire le signe de la fonction f via le tableau suivant:



7. Déterminons la plus petite valeur de " k " telle que $g_k(x) \ge 0$ sur] $0; +\infty$ [:

lci:
$$g_k(x) = x^2 - 8 \ln(x) + k = f(x) + k$$

 $g_k = 0; +\infty$

Comme $g_k(x) = f(x) + k$, la fonction g_k a donc les mêmes variations que la fonction f sur $]0; +\infty[$.

 g_k admet donc comme minimum le point A (2; 4 - 8 ln (2) + k).

La plus petite valeur de k pour laquelle $g_k(x) \ge 0$ sur] $0; +\infty$ [est donc telle que: $4-8 \ln(2)+k \ge 0$ cad $k \ge 8 \ln(2)-4$.

La plus petite valeur de * k * est donc: 8 In (2) - 4.