1re MATHÉMATIQUES Enseignement de Spécialité

Fonctions cosinus et sinus

Mini Cours

www.freemaths.fr

A. Parité d'une fonction:

1. Définition:

- Une fonction f définie sur un ensemble I, symétrique par rapport $a \ll 0$, est paire ssi pour tout $x \in I$: f(-x) = f(x).
- Une fonction f définie sur un ensemble I, symétrique par rapport $a \ll 0$, est impaire ssi pour tout $x \in I$: f(-x) = -f(x).

2. Conséquences:

- La courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.
- La courbe représentative d'une fonction impaire est symétrique par rapport à l'origine du repère.
- 3. Application aux fonctions cosinus et sinus:
- La fonction cosinus est paire: $\cos(-x) = \cos(x)$.
- La fonction sinus est impaire: $\sin(-x) = -\sin(x)$.

B. Périodicité d'une fonction:

1. Définition:

Soient f une fonction définie sur I et T > 0 un nombre réel tel que si $x \in I$, alors $x + T \in I$.

- 2. Application aux fonctions cosinus et sinus:
- Cosinus est périodique de période 2π : $\cos(x+2\pi) = \cos(x)$.
- Sinus est périodique de période 2π : $\sin(x+2\pi) = \sin(x)$.

C. Dérivées des fonctions cosinus et sinus:

Soient a et b deux réels. Pour tout $x \in \mathbb{R}$:

- $\bullet (\cos (x))' = -\sin (x)$
- $\bullet (\sin (x))' = \cos (x)$
- $(\cos(ax+b))'=-a\sin(ax+b)$
- $\bullet (\sin (ax+b))' = a\cos (ax+b)$
- $[\cos(\mathbf{U}(x))]' = -\mathbf{U}'(x) \times \sin(\mathbf{U}(x))$
- $[\sin (U(x))]' = U'(x) \times \cos (U(x)).$