www.freemaths.fr

Technologique Mathématiques (STI2D)

Nombres Complexes Partie Géométrique

A. Affixe d'un point:

1. Définition:

Un nombre complexe z = x + iy peut être représenté dans le plan par un point M de coordonnées (x; y): z est appelé affixe du point M.

2. Remarque:

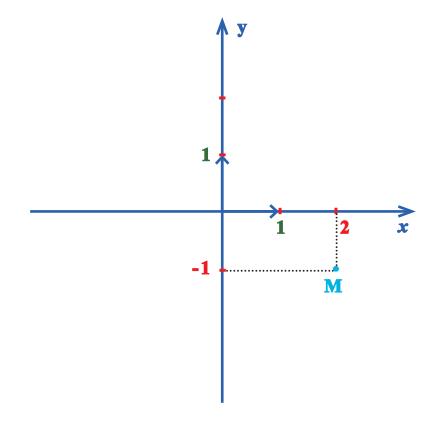
On dit que: le point M est l'image de z.

3. Exemple:

Soit z = 2 - i, un nombre complexe.

Nous pouvons dire alors: • z est l'affixe du point M (2; -1)

• M (2; -1) est l'image de z.



B. Affixe d'un vecteur:

1. Définition:

Soient A et B deux points d'affixes respectives z_A et z_B .

Le vecteur \overrightarrow{AB} a pour affixe le complexe: $\mathbf{z}_{B} - \mathbf{z}_{A}$.

2. Exemple:

Soit: $\mathbf{z}_{A} = 3 + 2i$, l'affixe du point A

• $z_B = 2 - 7i$, l'affixe du point B.

Dans ces conditions, le vecteur AB a pour affixe:

$$\overrightarrow{AB}\begin{pmatrix} 2-3\\ -7-2 \end{pmatrix}$$
 cad $\overrightarrow{AB}\begin{pmatrix} -1\\ -9 \end{pmatrix}$.

C. Propriétés:

- 1. Soient A et B deux points d'affixes respectives z_A et z_B .
 - Les points A et B sont confondus ssi: $\mathbf{z}_{A} = \mathbf{z}_{B}$.
 - Le milieu du segment [AB] a pour affixe: $\frac{Z_A + Z_B}{2}$.
- 2. Soient \overrightarrow{U} et \overrightarrow{V} deux vecteurs ayant pour affixe respectives z_u et z_v .
 - Les vecteurs $\overrightarrow{\mathbf{U}}$ et $\overrightarrow{\mathbf{V}}$ sont égaux ssi: $\mathbf{z}_{\mathbf{u}} = \mathbf{z}_{\mathbf{v}}$.
 - Le vecteur $\vec{U} + \vec{V}$ a pour affixe: $z_u + z_v$.

3. Les points M (z) et M' (z) sont symétriques par rapport à l'axe des abscisses.

D. Comment montrer...?

Soient quatre points $A(z_A)$, $B(z_B)$, $C(z_C)$ et $D(z_D)$.

1. Deux vecteurs parallèles ou colinéaires :

(AB) // (CD) ssi:
$$\frac{z_D - z_C}{z_B - z_A} \in \mathbb{R}$$
.

2. Trois points alignés:

A, B et C sont alignés ssi:
$$\frac{z_C - z_A}{z_B - z_A} \in \mathbb{R}$$
.

3. Deux vecteurs orthogonaux:

(AB)
$$\perp$$
 (CD) ssi: $\frac{z_D - z_C}{z_B - z_A}$ est un imaginaire pur.

4. Égalité entre deux longueurs:

la longueur [AB] = la longueur [AC] ssi:
$$|z_B - z_A| = |z_C - z_A|$$
.

5. Triangle ABC isocèle en A:

Le triangle ABC est isocèle en A lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] cad ssi : $|\mathbf{z}_{B} - \mathbf{z}_{A}| = |\mathbf{z}_{C} - \mathbf{z}_{A}|$.

6. Triangle ABC rectangle en A:

Le triangle ABC est rectangle en A ssi:
$$\frac{z_C - z_A}{z_B - z_A}$$
 est un imaginaire pur.

7. Triangle ABC équilatéral direct:

Le triangle ABC est un triangle équilatéral direct ssi:

$$\frac{\mathbf{Z}_{\mathrm{B}} - \mathbf{Z}_{\mathrm{A}}}{\mathbf{Z}_{\mathrm{C}} - \mathbf{Z}_{\mathrm{A}}} = \frac{1}{2} + \mathbf{i} \left(\frac{\sqrt{3}}{2} \right).$$

8. Quadrilatère ABCD = losange:

Le quadrilatère ABCD est un losange ssi:

•
$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\bullet |_{\mathbf{Z}_{\mathbf{B}}} - \mathbf{z}_{\mathbf{A}}| = |_{\mathbf{Z}_{\mathbf{C}}} - \mathbf{z}_{\mathbf{D}}|$$

$$\cdot \overrightarrow{AD} = \overrightarrow{BC}$$

•
$$\overrightarrow{AD} = \overrightarrow{BC}$$
 \iff • $|\mathbf{z}_{D} - \mathbf{z}_{A}| = |\mathbf{z}_{C} - \mathbf{z}_{B}|$

• (BD)
$$\perp$$
 (CA) • $\frac{z_A - z_C}{z_D - z_B}$ est un imaginaire pur.