www.freemaths.fr

1re Technologique Mathématiques

(STI2D et STL)

Primitives

A. Définition d'une primitive F de f sur I:

Soit f une fonction continue sur un intervalle I.

On appelle primitive de f sur I toute fonction F dérivable sur I telle que:

$$\mathbf{F'} = \mathbf{f}$$
.

B. Propriété:

Toute fonction continue sur un intervalle I admet des primitives.

C. Les primitives G de f sur I:

Soit \mathbf{F} une primitive de la fonction f sur \mathbf{I} .

Toutes les primitives G de f sur I sont de la forme: $G(x) = F(x) + c, c \in \mathbb{R}$.

D. La primitive qui s'annule en "a":

Toutes les primitives G de f sur I sont de la forme: $G(x) = F(x) + c, c \in \mathbb{R}$.

Déterminer la primitive de f qui s'annule en "a" revient à trouver le nombre réel "c" tel que: G(a) = 0.

E. Tableaux des primitives:

Tu dois connaître par \P les primitives \mathbb{F} des fonctions f suivantes.

Freemaths: Tous droits réservés

Tableau 1:

f	F	I
k	k • <i>x</i>	IR
x ⁿ	$\frac{x^{n+1}}{n+1}$	 n ≠ 0 et n ≠ -1 si n > 0:
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$] 0, +∞ [
$\frac{1}{x^2}$	$-\frac{1}{x}$	IR*
e ^x	e*	IR
$\frac{1}{x}$	ln (x)] 0, +∞ [
sin (x)	-cos (x)	IR
cos (x)	sin (x)	IR
ln (x)	$x \ln(x) - x$] 0, +∞ [

Freemaths: Tous droits réservés

Tableau 2:

f	F	Conditions
k·u'	k · u	
u' + v'	u + v	
	u ⁿ⁺¹	• n E N
u'·u"	n+1	• n ≠ 0
		• n ≠ -1
$\frac{\mathbf{u}^2}{\sqrt{\mathbf{u}}}$	2 √u	u strictement positive sur I
u'u	ln (u)	u strictement positive sur I
		• n ∈ N
$\frac{\mathbf{u}^{2}}{\mathbf{u}^{2}}$	<u>-1</u>	• n > 1
u-	u	• u ≠ 0 sur I
u' e ^u	e ^u	
$\sin(ax+b)$	$\frac{-1}{a}\cos\left(ax+b\right)$	a ≠ 0
$\cos(ax+b)$	$\frac{1}{a}\sin\left(ax+b\right)$	a ≠ 0