www.freemaths.fr

Mathématiques Enseignement Scientifique

Suites Géométriques

CORRIGÉ DE L'EXERCICE

UNE SUITE À PARTIR D'UNE SUITE...

3

CORRECTION

1. Montrons que pour tout entier naturel n, $U_{n+1} + V_{n+1} = U_n + V_n = I$:

$$U_{n+1} + V_{n+1} = -2 U_n + V_n + 3 U_n = U_n + V_n$$

Dans ces conditions: • $U_n + V_n = U_{n-1} + V_{n-1}$

• $U_{n-1} + V_{n-1} = U_{n-2} + V_{n-2}$

.

• $U_1 + V_1 = U_0 + V_0$

D'où: $U_{n+1} + V_{n+2} = U_n + V_n = U_{n-1} + V_{n-2} = \dots = U_1 + V_2 = U_0 + V_0 = I$

Au total, pour tout entier naturel n, nous avons bien: $U_{n+1} + V_{n+1} = U_n + V_n = I$.

2. Déduisons-en que $U_{n+1} = -3 U_n + 1$:

Pour tout entier naturel n: $U_n + V_n = I$.

D'où: $V_n = I - U_n$

Et par conséquent: $U_{n+1} = -2 U_n + V_n \iff U_{n+1} = -2 U_n + (1 - U_n)$.

freemaths.fr · Mathématiques

Ainsi, pour tout entier naturel n: $U_{n+1} = -3 U_n + 1$.

3. La suite (t_n) est-elle géométrique ?

Nous savons que pour tout entier naturel n: • $U_{n+1} = -3 U_n + 1$, avec $U_0 = \frac{1}{4}$

•
$$t_n = U_n - \frac{I}{4}$$

Dans ces conditions: $U_{n+1} = -3 U_n + 1 \iff U_{n+1} - \frac{1}{4} = \left(-3 U_n + 1\right) - \frac{1}{4}$

$$\iff t_{n+1} = -3 \left(U_n - \frac{1}{4} \right)$$

$$\iff$$
 $t_{n+1} = -3 t_n$

Ainsi, la suite (t_n) est une suite géométrique de raison q=-3 et de premier terme $t_0=U_0-\frac{1}{4}=-\frac{1}{4}$: $t_n=-\frac{1}{4}\times(-3)^n$, $n\in IN$.

4. Déduisons-en U_n et V_n en fonction de n:

a. En ce qui concerne Un:

Pour tout entier naturel n: $U_n = t_n + \frac{1}{4}$

D'où:
$$U_n = -\frac{1}{4} \times (-3)^n + \frac{1}{4}, n \in IN.$$

b. En ce qui concerne V_n:

Pour tout entier naturel n: $V_n = I - U_n$.

D'où:
$$V_n = \frac{1}{4} \times (-3)^n + \frac{3}{4}, n \in IN.$$