www.freemaths.fr

Mathématiques Enseignement Scientifique

Suites Géométriques

CORRIGÉ DE L'EXERCICE

GÉOMÉTRIQUE OU PAS ?

CORRECTION

Les suites (Un) sont-elles géométriques ?

D'après le cours, une suite (U_n) est géométrique ssi pour tout entier naturel n:

•
$$\frac{u_1}{u_0} = \frac{u_2}{u_1} = \dots = \frac{u_n}{u_{n-1}} = \frac{u_{n+1}}{u_n}$$
, avec $u_0 \neq 0$

• elle s'écrit sous la forme: $U_n = U_0 \times q^n$.

a. $U_n = 3 \times 7^n$:

Ici: $U_0 = 3$, $U_1 = 21$ et $U_2 = 147$.

Dans ces conditions: $\frac{U_1}{U_0} = 7$, $\frac{U_2}{U_1} = 7$ et donc: $\frac{U_1}{U_0} = \frac{U_2}{U_1} = 7$

• $U_n = U_0 \times q^n$ avec: $U_0 = 3$ et q = 7.

Au total: la suite (U_n) est bien une suite géométrique de raison q=7 et de premier terme $U_0=3$.

b.
$$U_n = 7 \times \left(\frac{1}{3}\right)^{(n-2)}$$
:

Ici: $U_0 = 63$, $U_1 = 21$ et $U_2 = 7$.

Dans ces conditions:
$$\frac{U_1}{U_0} = \frac{1}{3}$$
, $\frac{U_2}{U_1} = \frac{1}{3}$ et donc: $\frac{U_1}{U_0} = \frac{U_2}{U_1} = \frac{1}{3}$

•
$$U_n = U_0 \times q^n$$
 avec: $U_0 = 63$ et $q = \frac{1}{3}$.

$$\left(U_n = 63 \times \left(\frac{1}{3}\right)^n\right)$$

Au total: la suite (U_n) est bien une suite géométrique de raison $q = \frac{1}{3}$ et de premier terme $U_0 = 63$.

c.
$$U_n = 6^{(n+1)}$$
:

Ici:
$$U_0 = 6$$
, $U_1 = 36$ et $U_2 = 2.16$.

Dans ces conditions:
$$\frac{U_1}{U_0} = 6$$
, $\frac{U_2}{U_1} = 6$ et donc: $\frac{U_1}{U_0} = \frac{U_2}{U_1} = 6$

•
$$U_n = U_0 \times q^n$$
 avec: $U_0 = 6$ et $q = 6$. $(U_n = 6 \times 6^n)$

Au total: la suite (U_n) est bien une suite géométrique de raison q = 6 et de premier terme $U_0 = 6$.

d.
$$U_n = \frac{9}{4^{(n+1)}}$$
:

Ici:
$$U_0 = \frac{9}{4}$$
, $U_1 = \frac{9}{16}$ et $U_2 = \frac{9}{64}$.

Dans ces conditions:
$$\frac{U_1}{U_0} = \frac{1}{4}$$
, $\frac{U_2}{U_1} = \frac{1}{4}$ et donc: $\frac{U_1}{U_0} = \frac{U_2}{U_1} = \frac{1}{4}$

•
$$U_n = U_0 \times q^n$$
 avec: $U_0 = \frac{9}{4}$ et $q = \frac{1}{4}$.

$$\left(U_{n} = \frac{9}{4} \times \left(\frac{1}{4}\right)^{n}\right)$$

Au total: la suite (U_n) est bien une suite géométrique de raison $q = \frac{1}{4}$ et de premier terme $U_0 = \frac{9}{4}$.

e.
$$U_n = (-2)^n$$
:

Ici:
$$U_0 = 1$$
, $U_1 = -2$ et $U_2 = 4$.

Dans ces conditions:
$$\frac{U_1}{U_0} = -2, \quad \frac{U_2}{U_1} = -2 \quad \text{et donc:} \quad \frac{U_1}{U_0} = \frac{U_2}{U_1} = -2$$

$$\frac{U_2}{U_0} = -2, \quad \frac{U_2}{U_1} = -2 \quad \text{et donc:} \quad \frac{U_1}{U_0} = \frac{U_2}{U_1} = -2$$

$$\frac{U_2}{U_0} = -2, \quad \frac{U_2}{U_1} = -2, \quad \frac{U_2}$$

Au total: la suite (U_n) est bien une suite géométrique de raison q = -2 et de premier terme $U_0 = 1$.

f. 7
$$U_{n+1} = 6 U_n$$
 et $U_0 \neq 0$:

Préalablement nous pouvons écrire: $7 U_{n+1} = 6 U_n \iff U_{n+1} = \frac{6}{7} U_n$.

Dans ces conditions:
$$\frac{u_1}{u_0} = \frac{6}{7}, \quad \frac{u_2}{u_1} = \frac{6}{7} \text{ et donc: } \frac{u_1}{u_0} = \frac{u_2}{u_1} = \frac{6}{7}$$

$$\frac{u_1}{u_0} = \frac{u_2}{u_1} = \frac{6}{7} \text{ et donc: } \frac{u_1}{u_0} = \frac{u_2}{u_1} = \frac{6}{7}$$

$$\frac{u_1}{u_0} = \frac{u_2}{u_1} = \frac{6}{7} \text{ et donc: } \frac{u_1}{u_0} = \frac{u_2}{u_1} = \frac{6}{7}$$

$$\left(U_{n}=U_{0}\times\left(\frac{6}{7}\right)^{n}\right)$$

Au total: la suite (U_n) est bien une suite géométrique de raison $q = \frac{6}{7}$ et de premier terme $U_0 \neq 0$.

g.
$$U_n = 7 \cdot \frac{3^{(n+1)}}{2^n}$$
:

Ici:
$$U_0 = 21$$
, $U_1 = 31$, 5 et $U_2 = 47$, 25.

Dans ces conditions:
$$\frac{U_1}{U_0} = 1,5$$
, $\frac{U_2}{U_1} = 1,5$ et donc: $\frac{U_1}{U_0} = \frac{U_2}{U_1} = 1,5$

•
$$U_n = U_0 \times q^n$$
 avec: $U_0 = 21$ et $q = \frac{3}{2} = 1, 5$.

$$\left(U_n = 2I \times \left(\frac{3}{2} \right)^n \right)$$

Au total: la suite (U_n) est bien une suite géométrique de raison $q = \frac{3}{2}$ et de premier terme $U_0 = 21$.