www.freemaths.fr

Mathématiques Enseignement Scientifique

Probas & Tableaux

CORRIGÉ DE L'EXERCICE

UNE ÉQUIPE DE RUGBY

CORRECTION

1. Recopions et complétons le tableau d'effectifs:

Nous avons le tableau d'effectifs suivant:

	Joueur avant (A)	Joueur arrière (A)	Total
Plus de 100 kg (B)	<i>1</i> 5	3	18
< 100 kg (B)	6 = 21 - 15	11 = 14 - 3	17
Total	21	14	35

Notons que: •
$$18 = 15 + 3$$
,
• $17 = 35 - 18$,
• $6 = 21 - 15$,
• $11 = 14 - 3$.

2. Déterminons P (A) et P (B):

•
$$P(A)$$
?
 $P(A) = P(A \cap B) + (A \cap \overline{B})$

$$= \frac{15}{35} + \frac{6}{35}$$
$$= \frac{21}{35}$$
$$= 60\%$$

Ainsi, la probabilité d'être un joueur avant est: $P(A) = \frac{21}{35} = 60\%$

$$P(B) = P(B \cap A) + (B \cap \overline{A})$$

$$= \frac{15}{35} + \frac{3}{35}$$

$$= \frac{18}{35}$$

$$= 0,514.$$

Ainsi, la probabilité qu'un joueur pèse plus de $100 \, \text{kg}$ est: $P(B) \approx 51,4\%$

3. Calculons P (A ∩ B) et interprétons le résultat:

D'après le tableau à double entrée:
$$P(A \cap B) = \frac{15}{35}$$

$$= \frac{3}{7}$$

$$\approx 0,428.$$

De plus, notons que:
$$P(A) \times P(B) = \frac{21}{35} \times \frac{18}{35}$$

 ≈ 0.308 .

- Commentaires: comme P (A \cap B) \neq P (A) x P (B) (0, 428 \neq 0, 308), les événements A et B ne sont pas indépendants ce qui signifie qu'il y a une relation entre être un joueur avant et peser plus de 100 kg;
 - la probabilité qu'un joueur choisi au hasard soit un joueur avant et pèse plus de 100 kg est d'environ 42,8%.
- 4. Déterminons la probabilité que le joueur pèse plus de 100 kg sachant qu'il s'agit d'un joueur avant:

Ici, il s'agit de calculer: P_A (B).

D'après le cours: $P_A(B) = \frac{P(B \cap A)}{P(A)}$

D'où:
$$P_A(B) = \frac{\frac{15}{35}}{\frac{21}{35}} \text{ cad } P_A(B) = \frac{15}{21} \approx 0,714.$$

Ainsi, la probabilité que le joueur pèse plus de 100 kg sachant qu'il s'agit d'un joueur avant est d'environ 71, 4%.

5. Calculons P_B (A) et interprétons:

D'après le cours: $P_B(A) = \frac{P(A \cap B)}{P(B)}$

D'où:
$$P_B(A) = \frac{\frac{15}{35}}{\frac{18}{35}}$$
 cad $P_B(A) = \frac{15}{18} \approx 0,833$.

Interprétation: Cela signifie que la probabilité que le joueur soit un joueur avant sachant qu'il pèse plus de 100 kg est d'environ 83, 3%.