www.freemaths.fr

Mathématiques Enseignement Scientifique

Probas & Tableaux

CORRIGÉ DE L'EXERCICE

CHEVEUX BLONDS?

CORRECTION

1. Établissons un tableau à double entrée résumant la situation:

Nous pouvons établir le tableau à double entrée suivant:

	Femmes (H)	Hommes (H)	Total
Cheveux blonds (B)	<i>1</i> 5	4	19
Autres couleurs (B)	45 = 60 - 15	36 = 40 - 4	81
Total	6 0	40	100

$$(15 = 60 \times 25\%, 4 = 40 \times 10\%)$$

2. a. Calculons $P(\overline{H})$, P(B) et P(H):

•
$$P(\overline{H}) = P(\overline{H} \cap B) + P(\overline{H} \cap \overline{B})$$
.

D'après le tableau à double entrée:
$$P(\overline{H}) = \frac{15}{100} + \frac{45}{100} = 60\%$$
.

Ainsi, la probabilité que la personne tirée au hasard soit une femme est de 60%.

•
$$P(B) = P(B \cap \overline{H}) + P(B \cap H)$$
.

D'après le tableau à double entrée:
$$P(B) = \frac{15}{100} + \frac{4}{100} = 19\%$$
.

Ainsi, la probabilité que la personne tirée au hasard soit blonde est de 19%.

•
$$P(H) = P(H \cap B) + P(H \cap \overline{B})$$
.

D'après le tableau à double entrée:
$$P(H) = \frac{4}{100} + \frac{36}{100} = 40\%$$
.

Ainsi, la probabilité que la personne tirée au hasard soit un homme est de 40%.

2. b. Calculons la probabilité que cette personne soit blonde sachant que c'est un homme:

Ici, il s'agit de calculer: PH (B).

D'après le cours:
$$P_H(B) = \frac{P(B \cap H)}{P(H)}$$
.

D'après le tableau à double entrée:
$$P_H(B) = \frac{\frac{4}{100}}{\frac{40}{100}} = 10\%$$
.

Ainsi, la probabilité que cette personne soit blonde sachant que c'est un homme est de 10%.

2. c. Sachant que cette personne est blonde, calculons la probabilité que ce soit une femme:

Ici, il s'agit de calculer: $P_B(\overline{H})$.

D'après le cours:
$$P_B(\overline{H}) = \frac{P(\overline{H} \cap B)}{P(B)}$$
.

D'après le tableau à double entrée:
$$P_B(\overline{H}) = \frac{\frac{15}{100}}{\frac{19}{100}} = \frac{15}{19}$$
.

Ainsi, sachant que cette personne est blonde, la probabilité que ce soit une femme est de $\frac{15}{19}$.

3. Existe-t-il une relation entre être une femme et la couleur des cheveux ?

Nous avons d'après le tableau à double entrée: • $P(\overline{H}) = 60\%$

•
$$P(\bar{B}) = 81\%$$

•
$$P(\overline{H} \cap B) = \frac{15}{100} = 15\%$$

•
$$P(\overline{H} \cap \overline{B}) = \frac{45}{100} = 45\%$$
.

Comme:
$$P(\overline{H} \cap B) \neq P(\overline{H}) \times P(B) (15\% \neq 60\% \times 19\%)$$

• P
$$(\overline{H} \cap \overline{B}) \neq P(\overline{H}) \times P(\overline{B}) (45\% \neq 60\% \times 81\%)$$

Il existe une relation entre être une femme et la couleur des cheveux.

En effet, d'une part les événements \overline{H} et B ne sont pas indépendants, d'autre part les événements \overline{H} et \overline{B} ne sont pas indépendants.