www.freemaths.fr

Mathématiques Enseignement Scientifique

Fonctions : Études

CORRIGÉ DE L'EXERCICE

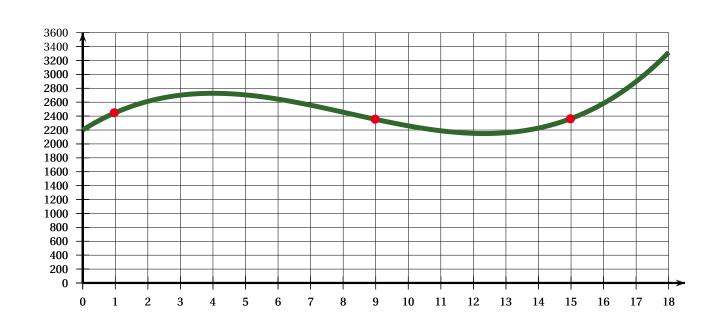
LE PRIX DE L'IMMOBILIER

CORRECTION

I. a. Par lecture graphique, donnons les solutions de l'équation f(x) = 2400:

A l'aide du graphique, f(x) = 2400 quand: $x \approx 1, x \approx 9$, et $x \approx 15$.

Ainsi, les solutions de l'équation f(x) = 2400 sont: 1,9 et 15.



1. b. Interprétons:

Cela signifie que prix du mètre carré sera de 2 400€ en: 2001, 2009 et 2015.

2. Déterminons la dérivée f de la fonction f:

La fonction f est dérivable sur [0; 18], avec: $f(x) = 2x^3 - 49x^2 + 296x + 2200$

D'où, nous pouvons calculer f' sur [0; 18]:

$$f'(x) = 6x^2 - 98x + 296$$
, pour tout $x \in [0; 18]$

La dérivée de la fonction f, pour tout $x \in [0; 18]$ est donc:

$$f'(x) = 6x^2 - 98x + 296$$

3. a. Montrons que f'(x) = (x - 4)(6x - 74):

Pour tout
$$x \in [0; 8]$$
: $(x-4)(6x-74) = 6x^2 - 74x - 24x + 296$
= $6x^2 - 98x + 296$
= $f'(x)$.

Donc pour tout $x \in [0; 18]$, nous avons bien: f'(x) = (x - 4)(6x - 74).

3. b. Résolvons l'équation f'(x) = 0:

$$f'(x) = 0 \iff (x - 4)(6x - 74) = 0 \iff \mathbf{x}_1 = 4 \text{ ou } \mathbf{x}_2 = \frac{37}{3}$$

Les solutions de l'équation f'(x) = 0 sont donc: 4 et $\frac{37}{3}$.

3. c. Interprétons les solutions de f'(x) = 0:

D'une part, $x_1 = 4$ et $x_2 = \frac{37}{3}$ sont les 2 racines de l'équation f'(x) = 0.

D'autre part, nous savons que:

• le nombre dérivé en un point est égal au coefficient directeur de la tangente à la courbe représentative de f en ce point,

Freemaths: Tous droits réservés

• si le nombre dérivé est nul, c'est que le coefficient directeur est nul et qu'ainsi la tangente à la courbe est horizontale.

Donc ici, cela signifie que la tangente à la courbe est horizontale aux points d'abscisses 4 et $\frac{37}{3}$.

3. d. Dressons le tableau de variations de f:

Étape 1: on détermine le signe de f'.

f' admet donc 2 racines:
$$x_1 = 4$$
 et $x_2 = \frac{37}{3}$.

D'où le tableau de signe de f' sur [0; 18] est:

x	0		4		37 3		18
x - 4		-	0	+		+	
6x - 74		-	0	-	Ö	+	
f'(x)		+	0	-	Ō	+	

Ainsi le signe de f' sur [0; 18] est: • strictement positif sur $[0; 4[\cup]\frac{37}{3}; 18]$

• nul si
$$x = 4$$
 ou $x = \frac{37}{3}$

• strictement négatif sur] 4; $\frac{37}{3}$ [.

Étape 2: on dresse le tableau de variations de f.

Le tableau de variations de f sur [0; 18] est le suivant:

x	0		4		<u>37</u> 3	18
f'(x)		+	0	-	0	+
f(x)	a		7 b		¥ c /	d

• a = 2200• b = 2728• c = 2149• d = 3316

Ainsi: • f est croissante sur [0; 4]

- f est décroissante sur [4; $\frac{37}{3}$]
- f est croissante sur $[\frac{37}{3}; 18]$.