www.freemaths.fr



# Mathématiques Enseignement Scientifique

**Automatismes** 



CORRIGÉ DE L'EXERCICE

# RÉVISIONS, POURCENTAGES 10

### CORRECTION

### 1. Déterminons une équation de la droite (AB):

Soit  $\Delta$ , la droite du graphique avec  $\Delta = (AB)$ .

Cette droite  $\triangle$  passe par les points A(-2, 4) et B(2, 2).

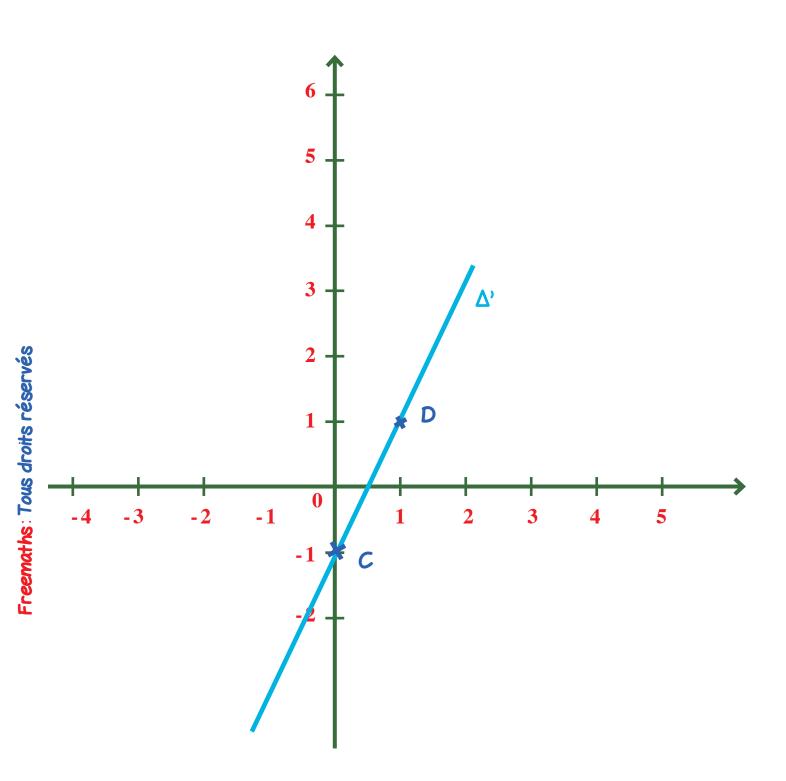
Soit " a " le coefficient directeur de cette droite, " a " est tel que:

$$a = \frac{y_B - y_A}{x_B - x_A}$$
 cad  $a = \frac{2 - 4}{2 - (-2)} = -\frac{1}{2}$ 

Or la droite  $\triangle$  a pour équation:  $y = a \times x + b$ , d'où:  $y = \frac{1}{2} \times x + b$ .

De plus,  $\triangle$  passe par le point B (2; 2), d'où:  $2 = -\frac{1}{2} \times 2 + b$  cad b = 3.

Ainsi, l'équation de la droite  $\Delta$  est:  $y = -\frac{1}{2}x + 3$ .


### 2. Traçons la droite d'équation y = 2x - 1:

Soit  $\Delta$ ' la droite d'équation: y = 2x - 1.

Prenons deux points: • si x = 0, y = -1

• si 
$$x = l$$
,  $y = l$ .

D'où les deux points suivants: C(0;-1) et D(1;1).



## 3. Déterminons le nouveau prix de la perceuse:

Soient P le prix initial de la perceuse (avant la baisse), et P' le prix final de la perceuse (après la baisse).

Nous avons: 
$$P' = P \times (1 - 20\%)$$
, car la baisse est de 20%
$$= P - 20\% \times P$$

$$= 120 - 20\% \times 120$$
, car  $P = 120 \in$ 

$$= 120 - 24$$

$$= 96 \in$$

Ainsi, le nouveau prix de la perceuse est égal à: 96 €.

4. Déterminons le taux d'évolution correspondant à deux baisses successives de 50%:

Soit  $\boldsymbol{x}$  un nombre appartenant à IR.

- une réduction de 50% de x est égale à:  $x \times (1-50\%) = x \times 0, 5 = \frac{x}{2}$ ,
- une seconde réduction de 50% de x est égale à:  $\frac{x}{2} \times (1-50\%) = \frac{x}{2} \times 0, 5 = \frac{x}{4}$

Or: 
$$\frac{x}{4} = \frac{1}{4} \times x = 0$$
, 25 x x cad  $\frac{x}{4} = 25\% \times x$  ou encore  $\frac{x}{4} = x \times (1 - 75\%)$ .

Ainsi, deux réductions successives de 50% de x correspond à:

une réduction de 75%.

D'où un taux d'évolution de: -75%.

5. Déterminons le prix initial de l'article:

Soient P le prix initial de l'article (avant la baisse), et P' le prix final de l'article (après la baisse).

Nous avons:  $P' = P \times (1 - 50\%)$ , car la baisse est de 50%

$$= P - 50\% \times P$$
  
=  $P - 0, 5 \times P$   
=  $0, 5 \times P$ .

Or: P' = 120€.

D'où:  $P' = 0,5 \times P \iff 120 = 0,5 \times P \text{ cad } P = 240 \in$ .

Ainsi, le prix initial de l'article est égal à: 240€.

6. Convertissons en mètres et donnons la réponse en écriture scientifique:

Nous savons que:  $1 \text{ km} = 1000 \text{ mètres} = 10^3 \text{ mètres}$ .

Dans ces conditions:  $5906 \times 10^6 \text{ km} = 5906 \times 10^6 \times 10^3 \text{ mètres}$ 

 $= 5906 \times 10^{6+3}$  mètres

 $= 5906 \times 10^9 \text{ mètres}.$ 

Ainsi, en écriture scientifique:  $5906 \times 10^6 \text{ km} = 5906 \times 10^9 \text{ mètres}$ .

7. Développons et réduisons l'expression A = 2(x - 2)(2x + 3):

Soit 
$$A = 2(x-2)(2x+3)$$
.

$$A = 2(2x^2 + 3x - 4x - 6)$$

$$=4x^2-2x-12.$$

Ainsi, l'expression développée et réduite de A est:  $A = 4x^2 - 2x - 12$ .

8. Calculons la part de GES produite en 2010 par les industries de l'énergie:

Nous savons que la somme des parts doit égale à 100%.

Soit " x ", la part de GES produite en 2010 par les industries de l'énergie:

$$x + 19\% + 36\% + 17\% + 9\% + 3\% = 100\%$$

$$<=> x + 84\% = 100\%.$$

Dans ces conditions: x = 100% - 84% cad x = 16%.

Ainsi, la part de GES produite en 2010 par les industries de l'énergie est de: 16%.

9. Donnons, en millions de tonnes, la masse de GES émise par le transport:

La masse de GES émise par le transport est: 36% x 347 millions de tonnes.

Ainsi, la masse de GES émise par le transport est d'environ:

125 millions de tonnes.

10. Déterminons la proportion des émissions totales de GES représentée par l'avion:

10% des GES émis par le secteur des transports représente:

$$10\% \times 125 = 12,5$$
 millions de tonnes.

Or en 2010, 347 millions de tonnes de GES ont été émises.

Ainsi, la proportion des émissions totales de GES représentée par l'avion est d'environ:  $\frac{12,5}{347} \approx 3,6\%$ .